Advertisement

International Journal of Thermophysics

, Volume 1, Issue 1, pp 73–82 | Cite as

On the anharmonic contribution to the specific heat of monatomic face-centered cubic crystals

  • R. C. Shukla
Article

Abstract

We have presented a method for an exact calculation of the two lowest-order, cubic (F3) and quartic (F4), perturbation terms in the Helmholtz free energy (F) of an anharmonic crystal in the high temperature limit. The method is applicable to a nearest-neighbor central force model of a monatomic fcc crystal for any phenomenological two-body potential Φ(r). The calculation of F3 and F4 requires a knowledge of the six dimensionless Brillouin zone (BZ) sums, as a function of a parameter a1 depending on the first and second derivatives of Φ(r). These sums are calculated to a high degree of accuracy for a mesh size of 308,000 points in the whole BZ in the range −0.1≤a1≤+0.1 in steps of 0.02. The linear temperature dependent anharmonic contribution to the specific heat at constant volume, calculated for the elements Pb, Ag, Ni, Cu, Al, Ca, and Sr, from the Morse and Rydberg potentials, is found to be positive in all cases, with the exception of Pb. In this case the Morse potential gives a negative sign. The predictions of theory are in agreement with experiments where the data is available (e.g., Cu, Al, and Pb).

Key words

Helmholtz free energy anharmonic fcc crystal specific heat perturbation theory Brillouin zone sums 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. L. Klein and T. R. Koehler, Rare Gas Solids, Vol. 1 (Academic, New York, 1977), Chap. 6, pp. 301–381.Google Scholar
  2. 2.
    E. A. Stern, Phys. Rev. 111: 786 (1958).Google Scholar
  3. 3.
    A. A. Maradudin, P. A. Flinn, and R. A. Coldwell-Horsfall, Ann. Phys. (N.Y.) 15: 360 (1961).Google Scholar
  4. 4.
    R. C. Shukla and L. Wilk, Phys. Rev. B 10: 3660 (1974).Google Scholar
  5. 5.
    J. L. Feldman and G. K. Horton, Proc. Phys. Soc. (London) 92: 227 (1967).Google Scholar
  6. 6.
    L. A. Girifalco and V. G. Weizer, Phys. Rev. 114: 687 (1959).Google Scholar
  7. 7.
    Y. P. Varshni and F. J. Bloore, Phys. Rev. 129: 115 (1963).Google Scholar
  8. 8.
    R. C. Shukla and R. Taylor, Phys. Rev. B9: 4116 (1974).Google Scholar
  9. 9.
    R. C. Shukla, J. Chem. Phys. 45: 4178 (1966).Google Scholar
  10. 10.
    M. Born, Rep. Progr. Phys. 9: 294 (1942–1943).Google Scholar
  11. 11.
    C. R. Brooks and R. E. Bingham, J. Phys. Chem. Solids 29: 1553 (1968).Google Scholar
  12. 12.
    A. J. Leadbetter, J. Phys. C (Proc. Phys. Soc.) 1: 1489 (1968).Google Scholar
  13. 13.
    C. R. Brooks, J. Phys. Chem. Solids 29: 1377 (1968).Google Scholar
  14. 14.
    E. R. Cowley and R. C. Shukla, Phys. Rev. B9: 1261 (1974).Google Scholar
  15. 15.
    A. I. Gubanov and V. K. Nikulin, Phys. Status Solidi 17: 815 (1966).Google Scholar
  16. 16.
    J. A. Moriarty, Phys. Rev. B6: 1239 (1972).Google Scholar
  17. 17.
    G. Nilsson and S. Rolandson, Phys. Rev. B7: 2393 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • R. C. Shukla
    • 1
  1. 1.Physics DepartmentBrock UniversitySt. CatharinesCanada

Personalised recommendations