Viscosity of yeast suspensions

  • M. Reuß
  • D. Josić
  • M. Popović
  • W. K. Bronn
Biotechnology

Summary

Precise knowledge of the viscosity of yeast suspensions is essential to the design of many recovery operations. The present work is concerned with measurement of the viscosity of Saccharomyces cerevisiae and Candida utilis suspensions at different cell concentrations and osmotic pressures. Particular attention is given to the determination of the volume fraction ∈X of the yeast suspensions.

The experimental results may be correlated by an equation of the form
$$\eta _{\text{S}} /\eta _{\text{O}} = 1/(1 - (h_S \in _X )^a )$$

Parameter ‘a’ depends on the morphology of the yeast whilst hS is a function of the osmotic pressure. The latter dependency is interpreted through the concept of close packing of the microbial particles.

Symbols

a

Parameter in Eq. (8)

E1

Extinction before resuspension

E2

Extinction after resuspension

E

Dilution (=E1/E2)

HS

Packing factor in Eq. (8)

Posm

Osmotic pressure (bar=105N/m2)

V

Volume

X

Volume fraction of cells

η

Viscosity

ρ

Density

Subscripts

O

Supernatant

ex

Extracellular

S

Suspension

Se

Sediment

X

Biomass

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiba S, Kitai S, Ishida N (1962) J Gen Appl Microbiol 8:103–108Google Scholar
  2. Blanch HW, Bhavaraju SM (1976) Biotechnol Bioeng 18:745–790Google Scholar
  3. Brauer H (1971) Grundlagen der Einphasen-und Mehrphasenströmungen. Sauerländer, Aarau Frankfurt a.M.Google Scholar
  4. Brodnyan JG (1959) Trans Soc Rheol 3:61–68Google Scholar
  5. Charles, M (1978) Technical aspects of the rheological properties of microbial cultures. In: Ghose TK, Fiechter A, Blakebrough N (eds) Advances in biochemical engineering, Vol. 8. Springer, Berlin Heidelberg New York, pp 1–62Google Scholar
  6. Deindoerfer FH, West JM (1960) Rheological properties of fermentation broths. In: Umbreit WW (ed) Advances in applied microbiology, Vol. 2. Academic Press, London New York, pp 265–273Google Scholar
  7. Einstein, A (1906) Ann Phys Paris IV 19:289–306Google Scholar
  8. Einstein A (1911) Ibid 34:591–592Google Scholar
  9. Eirich F, Bunzl M, Margaretha H (1936) Kolloid-Z 74:276–285Google Scholar
  10. Haddad SA, Lindegren CC (1953) Appl Microbiol 1:153–156Google Scholar
  11. Orr C Jr, Blocker HG (1955) J Coll Sci 10:24–28Google Scholar
  12. Saunders FL (1966) J Colloid Interface Sci 22:573–581Google Scholar
  13. Sherman P (1960) Proc. 3rd Intern. Congr. Surface Activity II, 596–609Google Scholar
  14. Sherman P (1970) Industrial rheology. Academic Press, London New YorkGoogle Scholar
  15. Shimmons BW, Sorcek WY, Zajic JE (1976) Biotechnol Bioeng 18:1793–1805Google Scholar
  16. Sweeny RH, Geckler RD (1954) J Appl Phys 25:1135–1144Google Scholar
  17. Vand V (1948) J Phys Colloid Chem 52:277–299Google Scholar
  18. White J (1954) Yeast technology. Chapman & Hall, LondonGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. Reuß
    • 1
  • D. Josić
    • 1
  • M. Popović
    • 1
  • W. K. Bronn
    • 1
  1. 1.Lehrstuhl für BiotechnologieTechnische Universität Berlin und Institut für Gärungsgewerbe und BiotechnologieBerlin 65

Personalised recommendations