Advertisement

International Journal of Thermophysics

, Volume 12, Issue 1, pp 67–83 | Cite as

The thermal diffusivity of argon in the critical region

  • F. M. Gumerov
  • D. G. Amirkhanov
  • A. G. Usmanov
  • B. Le Neindre
Article

Abstract

In this paper experimental results on the thermal diffusivity of argon in the supercritical region are reported. Five isotherms were investigated at 150.90, 153.16, 163.15, 173.14, and 188.14 K, in the pressure range from 2 to 13 MPa, corresponding to density variations from 90 to 800kg · m−3. The experimental thermal diffusivity data are compared with theoretical predictions. The corresponding thermal conductivity coefficients are calculated and correlated with respect to the spinodal curve.

Key words

argon thermal conductivity thermal diffusivity supercritical region 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. M. Gumerov, D. G. Amirkanov, and A. G. Usmanov, Heat Mass Transfer Chem. Technol. 7:8 (1979).Google Scholar
  2. 2.
    J. B. Bach and U. Grigull, Wärme Stoffubertragung 3:44 (1970).Google Scholar
  3. 3.
    M. A. Anisimov, Critical Phenomena of Liquids and Liquid Crystals (Science, Moscow, 1987), p. 272.Google Scholar
  4. 4.
    N. J. Trappeniers, in Proceedings of the 8th Symposium on Thermophysical Properties, Vol. 1. Thermophysical Properties of Fluids, J. V. Sengers, ed. (ASME, New York, 1982), p. 232.Google Scholar
  5. 5.
    H. L. Swinney and D. L. Henry, Phys. Rev. A8:2586 (1973).Google Scholar
  6. 6.
    K. Ohbayashi and A. Ikushimo, J. Low Temp. Phys. 19:449 (1975).Google Scholar
  7. 7.
    C. E. Pittman, Ph. D. thesis (Department of Physics, Duke University, Durham, N.C., 1981).Google Scholar
  8. 8.
    Z. P. Kadanoff and J. Swift, Phys. Rev. 89:166 (1968).Google Scholar
  9. 9.
    K. Kawasaki, Ann. Phys. 61:1 (1970).Google Scholar
  10. 10.
    H. J. M. Hanley, J. V. Sengers, and J. F. Ely, in Thermal Conductivity 14, P. G. Klemens and T. K. Chu, eds. (Plenum, Nex York, 1976), p. 383.Google Scholar
  11. 11.
    J. A. Gracki, G. P. Flynn, and J. Ross, J. Chem. Phys. 51:3856 (1969).Google Scholar
  12. 12.
    W. M. Haynes, Physica 67:440 (1973).Google Scholar
  13. 13.
    A. L. Gosman, R. D. McCarty, and J. G. Hust, NSRDS-NBS 27:146 (1969).Google Scholar
  14. 14.
    B. W. Tiesinga, Ph.D. thesis (University of Amsterdam, Amsterdam, 1980).Google Scholar
  15. 15.
    J. Benedeck, Polarisation, Matière et Rayonnement (Presses Universitaires de France, Paris, 1969), p. 49.Google Scholar
  16. 16.
    J. M. Abdoulagatov, J. Phys. Chem. 58:2456 (1984) (Russian).Google Scholar
  17. 17.
    T. S. Ahoundov, J. M. Abdoulagatov, and U. B. Ichanov, Teplophys. Vaisokich Temp. 23:285 (1985).Google Scholar
  18. 18.
    J. M. Abdoulagatov, Thermophysical Properties of Matter in Condensed State (Makhachkala, 1982), p. 119.Google Scholar
  19. 19.
    J. M. Abdoulagatov, Report on Method of Studies of Heat Capacity at Constant Volume in Large Range of State Parameters (Makhachkala, 1982), p. 23.Google Scholar
  20. 20.
    U. A, Anisimov, A. T. Berestov, and V. P. Voronov, J. Exp. Theor. Phys. 76:1661 (1979) (Russian).Google Scholar
  21. 21.
    L. P. Filippov, Tieplophys. Vaisokich Temp. 22:679 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • F. M. Gumerov
    • 1
  • D. G. Amirkhanov
    • 1
  • A. G. Usmanov
    • 1
  • B. Le Neindre
    • 2
  1. 1.Kazan Institure of Chemical TechnologyKazan 15USSR
  2. 2.LIMHPUniversity Paris-NordVilletaneuseFrance

Personalised recommendations