Advertisement

International Journal of Thermophysics

, Volume 12, Issue 1, pp 27–42 | Cite as

The initial density dependence of transport properties: Noble gases

  • E. Bich
  • E. Vogel
Article

Abstract

The usual procedure that the transport properties at atmospheric pressure are identified with values in the limit of zero density cannot be accepted for all reduced temperatures T*. It is shown in the framework of the Rainwater-Friend theory for noble gases, as a good example, that for T*<1 the effect of the initial density dependence has different signs for viscosity and thermal conductivity and amounts to a few percent, when data at atmospheric pressure are compared with zero-density values. An improved representation of the monomer-dimer contribution to the second transport virial coefficients of the Rainwater-Friend theory is presented in the paper. This is based, among others, on the author's own experimental data of the initial density dependence of viscosity of polytomic gases.

Key words

noble gases second transport virial coefficients thermal conductivity viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kestin, S. T. Ro, and W. A. Wakeham, Physica 58:165 (1972).Google Scholar
  2. 2.
    G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces: Their Origin and Determination (Clarendon, Oxford, 1987).Google Scholar
  3. 3.
    B. Najafi, E. A. Mason, and J. Kestin, Physica 119A:387 (1983).Google Scholar
  4. 4.
    E. Bich, J. Millat, and E. Vogel, Wiss. Z. W.-Pieck-Univ. Rostock 36(N8):5 (1987).Google Scholar
  5. 5.
    A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason, J. Phys. Chem. Ref. Data 16:445 (1987).Google Scholar
  6. 6.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).Google Scholar
  7. 7.
    J. C. Rainwater, J. Chem. Phys. 81:495 (1984).Google Scholar
  8. 8.
    D. G. Friend and J. C. Rainwater, Chem. Phys. Lett. 107:590 (1984).Google Scholar
  9. 9.
    J. C. Rainwater and D. G. Friend, Phys. Rev. A36:4062 (1987).Google Scholar
  10. 10.
    D. Enskog, Kgl. Svenska Ventensk. Handl. 63:No. 4 (1922).Google Scholar
  11. 11.
    D. K. Hoffman and C. F. Curtiss, Phys. Fluids 8:890 (1965).Google Scholar
  12. 12.
    D. G. Friend, J. Chem. Phys. 79:4553 (1983).Google Scholar
  13. 13.
    D. E. Stogryn and J. O. Hirschfelder, J. Chem. Phys. 31:1545 (1959).Google Scholar
  14. 14.
    D. E. Stogryn and J. O. Hirschfelder, J. Chem. Phys. 31:1531 (1959).Google Scholar
  15. 15.
    E. A. Mason and L. Monchick, J. Chem. Phys. 36:1622 (1962).Google Scholar
  16. 16.
    L. Monchick, A. N. G. Pereira, and E. A. Mason, J. Chem. Phys. 42:3241 (1965).Google Scholar
  17. 17.
    L. A. Viehland, E. A. Mason, and S. I. Sandler, J. Chem. Phys. 68:5277 (1978).Google Scholar
  18. 18.
    J. Millat, V. Vesovic, and W. A. Wakeham, Int. J. Thermophys. 10:805 (1989).Google Scholar
  19. 19.
    H. J. M. Hanley, R. D. McCarty, and J. V. Sengers, J. Chem. Phys. 50:857 (1969).Google Scholar
  20. 20.
    R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Mol. Phys. 61:1487 (1987).Google Scholar
  21. 21.
    R. A. Aziz and M. J. Slaman, Chem. Phys. 130:187 (1989).Google Scholar
  22. 22.
    R. A. Aziz and M. J. Slaman, Mol. Phys. 58:679 (1986).Google Scholar
  23. 23.
    R. A. Aziz and M. J. Slaman, Mol. Phys. 57:825 (1986).Google Scholar
  24. 24.
    A. A. Clifford, P. Gray, and N. Platts, J. Chem. Soc. Faraday Trans. I 73:381 (1977).Google Scholar
  25. 25.
    F. M. Mourits and F. H. A. Rummens, Can. J. Chem. 55:3007 (1977).Google Scholar
  26. 26.
    T. Strehlow and E. Vogel, Physica 161A:101 (1989).Google Scholar
  27. 27.
    E. Vogel, B. Holdt, and T. Strehlow, Physica 148A:46 (1988).Google Scholar
  28. 28.
    E. Vogel and T. Strehlow, Z. Phys. Chem. Leipzig 269:897 (1988).Google Scholar
  29. 29.
    E. Vogel, E. Bich, and R. Nimz, Physica 139A:188 (1986).Google Scholar
  30. 30.
    J. Kestin, E. Paykoc, and J. V. Sengers, Physica 54:1 (1971).Google Scholar
  31. 31.
    J. A. Gracki, G. P. Flynn, and J. Ross, J. Chem. Phys. 51:3856 (1969).Google Scholar
  32. 32.
    G. P. Flynn, R. V. Hanks, N. A. Lemaire, and J. Ross, J. Chem. Phys. 38:154 (1963).Google Scholar
  33. 33.
    N. J. Trappeniers, A. Botzen, H. R., van den Berg, and J. van Oosten, Physica 30:985 (1964).Google Scholar
  34. 34.
    J. Kestin, Ö. Korfali, J. V. Sengers, and B. Kamgar-Parsi, Physica 106A:415 (1981).Google Scholar
  35. 35.
    H. R. van den Berg and N. J. Trappeniers, Chem. Phys. Lett. 58:12 (1978).Google Scholar
  36. 36.
    J. Kestin and W. Leidenfrost, Physica 25:1033 (1959).Google Scholar
  37. 37.
    J. Kestin, Ö. Korfali, and J. V. Sengers, Physica 100A:335 (1980).Google Scholar
  38. 38.
    H. Iwasaki and M. Takahashi, J. Chem. Phys. 74:1930 (1981).Google Scholar
  39. 39.
    H. Iwasaki and M. Takahashi, Proc. 4th Int. Conf. High Press. (1974), p. 523.Google Scholar
  40. 40.
    J. Kestin, R. Paul, A. A. Clifford, and W. A. Wakeham, Physica 100A:349 (1980).Google Scholar
  41. 41.
    M. Mustafa, M. Ross, R. D. Trengove, W. A. Wakeham, and M. Zalaf, Physica 141A:233 (1987).Google Scholar
  42. 42.
    A. I. Johns, A. C. Scott, J. T. R. Watson, D. Ferguson, and A. A. Clifford, Phil. Trans. Roy. Soc. Lond. 325:295 (1988).Google Scholar
  43. 43.
    H. M. Roder, NBS, private communication, cited in Ref. 21.Google Scholar
  44. 44.
    A. Acton and K. Kellner, Physica 90B:192 (1977).Google Scholar
  45. 45.
    J. Millt M. Ross, W. A. Wakeham, and M. Zalaf, Physica 148A:124 (1988).Google Scholar
  46. 46.
    U. V. Mardolcar, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 7:259 (1986).Google Scholar
  47. 47.
    A. I. Johns, S. Rashid, J. T. R. Watson, and A. A. Clifford, J. Chem. Soc. Faraday Trans. I 82:2235 (1986).Google Scholar
  48. 48.
    J. Millat, M. Mustafa, M. Ross, W. A. Wakeham, and M. Zalaf, Physica 145A:461 (1987).Google Scholar
  49. 49.
    J. Millat, M. J. Ross, and W. A. Wakeham, Physica 159A:28 (1989).Google Scholar
  50. 50.
    F. G. Keyes, Trans. Am. Soc. Mech. Eng. 77:1395 (1955).Google Scholar
  51. 51.
    M. J. Assael, M. Dix, A. Lucas, and W. A. Wakeham, J. Chem. Soc. Faraday Trans. I 77:439 (1981).Google Scholar
  52. 52.
    J. de Boer, Physica 10:348 (1943).Google Scholar
  53. 53.
    Ref. 6. 674.Google Scholar
  54. 54.
    E. Bich, J. Millat, and E. Vogel, (in press).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • E. Bich
    • 1
  • E. Vogel
    • 1
  1. 1.Sektion Chemie der Universität RostockRostock 1German Democratic Republic

Personalised recommendations