Advertisement

The bradykinin-induced coronary vasodilation. evidence for an additional prostacyclin-independent mechanism

  • K. Schrör
  • U. Metz
  • R. Krebs
Article

Summary

  1. 1.

    The action of bradykinin on prostacyclin (PGI2) release and the coronary artery tone was studied in the isolated guinea pig heart and the bovine coronary artery. Myocardial force of concentration and oxygen consumption were monitored continuously.

     
  2. 2.

    Addition of bradykinin to the guinea pig heart was followed by a dose-dependent decrease in the coronary perfusion pressure, while myocardial contractile force and oxygen consumption remained unchanged, indicating a direct effect on the coronary vascular resistance. There was no evidence for tachyphylaxis.

     
  3. 3.

    Long-term treatment of the hearts with indomethacin at low concentrations (5×10−7 g/ml) did not influence the bradykinin-induced coronary dilation. Increasing the indomethacin (5×10−6 g/ml) produced a partial (repetitive application) or complete inhibition (cumulative dose-response curves).

     
  4. 4.

    Application of bradykinin to coronary artery strip also produced relaxation. Indomethacin (2×10−6 g/ml) did only attenuate this effect although it completely prevented the response to arachidonic acid.

     
  5. 5.

    The release of PGI2-like material from the heart by bradykinin was studied using the cascade-technique of Vane (1969). There was a dose-dependent release of a substance, which relaxed the bovine coronary artery. Pretreatment of the hearts with 15-hydroperoxy arachidonic acid or indomethacin (5×10−6 g/ml) produced a partial or complete inhibition of this response. However, there was no significant inhibition of the bradykinin-induced relaxation of the coronary vascular bed.

     
  6. 6.

    It is suggested that the inhibitory effect of high dose indomethacin is not due to inhibition of prostaglandin biosynthesis, which is already completely blocked at low doses. According to this, two different actions of indomethacin on the coronary vessels could be established.

     
  7. 7.

    The results indicate that bradykinin produces a pronounced release of PGI2 from the coronary vessels, which, however, can be blocked without abolition of the coronary relaxing activity. This provides evidence for an additional, PGI2-independent coronary action of this substance.

     

Key words

Prostacyclin (PGI2Bradykinin Coronary artery Guinea pig heart Indomethacin Oxygen consumption Myocardial mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonio, A., Rocha e Silva, M.: Coronary vasodilation produced by bradykinin in isolated mammalian heart. Circulat. Res. 11, 910–915 (1962)Google Scholar
  2. Block, A. J., Feinberg, H., Herbaczynska-Cedro, K., Vane, J. R.: Anoxia-induced relase of prostaglandins in rabbit isolated hearts. Circulat. Res. 36, 34–42 (1975)Google Scholar
  3. Blumberg, A. L., Denny, S. E., Marshall, G. R., Needleman, P.: Blood vessel-hormone interactions: angiotensin, bradykinin and prostaglandins. Am. J. Physiol. 232, H305-H310 (1977)Google Scholar
  4. Bräuninger, W., Krebs, R., Schrör, K.: Afterload-dependent alterations in the coronary vascular resistance of the rabbit isolated heart. Influence of indomethacin, PGE1 and adenosine. Naunyn-Schmiedeberg's Arch. Pharmacol. 294, Suppl. R4 (1976)Google Scholar
  5. Bunting, S., Gryglewski, R., Moncada, S., Vane, J. R.: Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12, 897–914 (1976)Google Scholar
  6. Chapnick, B. M., Paustian, P. W., Feigen, L. P., Joiner, P. D., Hyman, A. L., Kadowitz, P. J.: Influence of inhibitors of prostaglandin synthesis on renal vascular resistance and on renal vascular responses to vasopressor and vasodilator agents in the cat. Circulat. Res. 40, 348–354 (1977)Google Scholar
  7. Chong, E. K. S., Downing, O. A.: Selective inhibition of angiotensin-induced contractions of smooth muscle by indomethacin. J. Pharm. Pharmacol. 25, 170–171 (1973)Google Scholar
  8. Damas, J., Deby, C.: Sur la liberation des prostaglandines et de leurs precurseurs, par la bradykinine. Arch. Int. Biochim. 84, 293–304 (1976)Google Scholar
  9. De Deckere, E. A. M., Nugteren, D. H., Ten Hoor, F.: Prostacyclin is the major prostaglandin released from the isolated perfused rabbit and rat heart. Nature 268, 160–163 (1977)Google Scholar
  10. Dietze, G., Wicklmayr, M., Mayer, L., Böttger, I., Von Funcke, H.-J.: Bradykinin and human forearm metabolism: Inhibition of endogenous prostaglandin synthesis. Hoppe-Seyler's Z. Physiol. Chem. 359, 369–378 (1978)Google Scholar
  11. Dusting, G. J., Moncada, S., Vane, J. R.: Prostacyclin (PGX) is the endogenous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid. Prostaglandins 13, 3–15 (1977)Google Scholar
  12. Feldberg, W., Lewis, G. P.: The action of peptides on the adrenal medulla. Release of adrenaline by bradykinin and angiotensin. J. Physiol. 171, 98–108 (1964)Google Scholar
  13. Gießler, Ch., Mentz, P., Förster, W.: The action of phospholipase A2 on parameters of cardiac contraction, excitation and biosynthesis of prostaglandins. Pharmacol. Res. Comm. 9, 117–130 (1977)Google Scholar
  14. Goldberg, M. R., Chapnick, B. M., Joiner, P. D., Hyman, A. L., Kadowitz, P. J.: Influence of inhibitors of prostaglandin synthesis on venoconstrictor responses to bradykinin. J. Pharmacol. Exp. Ther. 198, 357–365 (1976)Google Scholar
  15. Gryglewski, R. J., Bunting, S., Moncada, S., Flower, R. J., Vane, J. R.: Arterial walls are protected against deposition of platelet thrombi by a substance (postaglandin X), which they make from prostaglandin endoperoxides Prostaglandins 12, 685–713 (1976)Google Scholar
  16. Hintze, T. H., Kaley, G.: Prostaglandins and the control of blood flow in the canine myocardium. Circulat. Res. 40, 313–320 (1977)Google Scholar
  17. Hong, S. L., Levine, L.: Stimulation of prostaglandin synthesis by bradykinin and thrombin and their mechanism of action on MC-5-5 fibroblasts. J. Biol. Chem. 251, 5814–5816 (1976)Google Scholar
  18. Horton, E. W.: Action of prostaglandin E1 on tissues which respond to bradykinin. Nature 200, 892–893 (1963)Google Scholar
  19. Hsueh, W., Isakson, P. C., Needleman, P.: Hormone selective lipase activation in the rabbit isolated heart. Prostaglandins 13, 1073–1091 (1977)Google Scholar
  20. Jobke, A., Peskar, B. A., Hertting, G.: On the relation between release of postaglanding and contractility of rabbit splenic capsular strips. Naunyn-Schmiedeberg's Arch. Pharmacol 292, 35–42 (1976)Google Scholar
  21. Juan, H.: Mechanism of action of bradykinin-induced release of prostaglandin E. Naunyn-Schmiedeberg's Arch. Pharmacol. 300, 77–85 (1977)Google Scholar
  22. Kalsner, S.: Endogenous prostaglandin release contributes directly to coronary artery tone. Canad. J. Physiol. Pharmacol. 53, 560–565 (1975)Google Scholar
  23. Klaus, W., Krebs, R.: Eine verbesserte Methode zur gleichzeitigen Messung des Sauerstoffverbrauchs und der mechanischen Aktivität isolierter Muskelpräparate. Naunyn-Schmiedeberg's Arch. Pharmacol. 261, 93–101 (1968)Google Scholar
  24. Krebs, R., Kersting, F.: The effect of barbiturates on the myocardium and its reversibility. Progress in Pharmacology. 2, 5–114 (1979)Google Scholar
  25. Kunze, H., Vogt, W.: Significance of phospholipase A for prostaglandin formation. Ann. N. Y. Acad. Sci. (USA) 180, 123–125 (1971)Google Scholar
  26. Limas, C. J.: Selective stimulation of venous prostaglandin E 9-ketoreductase by bradykinin. Biochim. Biophys. Acta, 498, 306–315 (1977)Google Scholar
  27. Lochner, W., Parratt, J. R.: A comparison of the effects of locally and systematically administered kinin on coronary blood flow and myocardial metabolism. Br. J. Pharmacol. 26, 17–26 (1966)Google Scholar
  28. Maxwell, G. M., Elliot, R. B., Kneebone, G. M.: Effects of bradykinin on the systemic and coronary vascular bed of the intact dog. Circulat. Res. 10, 359–363 (1962)Google Scholar
  29. McGiff, J. C., Terragno, N. A., Malik, K. U., Lonigro, A. J.: Release of a prostaglandin E-like substance from canine kidney by bradykinin. Circulat. Res. 31, 36–43 (1972)Google Scholar
  30. Messina, E., Weiner, R., Kaley, G.: Inhibition of bradykinin vasodilation and potentiation of norepinephrine and angiotensine vasoconstriction by inhibitors of prostaglandin synthesis in skeletal muscle of the rat. Circulat. Res. 37, 430–437 (1975)Google Scholar
  31. Metz, U.: Zur Wirkung von Bradykinin auf den coronaren Perfusionsdruck des isolierten, volumenkonstant perfundierten Meerschweinchenherzens. Inauguraldissertation Mainz (1977)Google Scholar
  32. Moncada, S., Ferreira, S. H., Vane, J. R.: Does bradykinin cause pain through prostaglandin production. Abstr. V. Intern. Congr. Pharmacol., San Francisco, p. 160 (1972)Google Scholar
  33. Moretti, R. L., Abraham, S., Ecker, R. R.: The stimulation of cardiac prostaglandin production by blood plasma and its relationship to the regulation of coronary flow in isolated isovolumic rabbit heart. Cireulat. Res. 39, 231–239 (1976)Google Scholar
  34. Needleman, P., Key, S. L., Denny, S. E., Isakson, P. C., Marshall, G. R.: The mechanism and modification of bradykinin-induced coronary vasodilation Proc. Natl. Acad. Sci. U.S.A. 72, 2060–2063 (1975)Google Scholar
  35. Needleman, P., Bronson, S. D., Wyche, A., sivakoff, M., Nicolaou, K. C.: Cardiac and renal prostaglandin I2. J. Clin. Invest. 61, 839–849 (1978)Google Scholar
  36. Northover, B. J.: Mechanism of the inhibitory action of indomethacin on smooth muscle. Brit. J. Pharmacol. 41, 540–551 (1971)Google Scholar
  37. Northover, B. J.: Indomethacin — a calcium antagonist. Gen. Pharmac. 8, 293–296 (1977)Google Scholar
  38. Olsen, U. B.: Kidney volume expansion and prostaglandin release by bradykinin. The effect of indomethacin pretreatment. Acta Physiol. Scand. 102, 129–136 (1978)Google Scholar
  39. Pace-Asciak, C., Cole, S.: Inhibitors of prostaglandin catabolism. I. Differential sensitivity of 9-PGDH, 13-PGR and 15-16-DH to low concentrations of indomethacin. Experientia 31, 143–145 (1975)Google Scholar
  40. Pace-Asciak, C. R., Rangaraj, G.: The 6-ketoprostaglandin F pathway in the lamb ductus arteriosus. Biochim. Biophys. Acta 486, 583–585 (1977)Google Scholar
  41. Parratt, J. R.: A comparison of the effects of the plasma kinins bradykinin and kallidin, on myocardial blood flow and metabolism. Brit. J. Pharmacol. 22, 34–46 (1964)Google Scholar
  42. Powell, W. S., Solomon, S.: Formation of 6-oxo-prostaglandin F by arteries of the fetal calf. Biochem. Biophys. Res. Comm. 75, 815–822 (1977)Google Scholar
  43. Powe, G. G., Afonso, S., Castillo, C. A., Lioy, F., Lugo, J. E., Crumpton, C. W.: The systemic and coronary hemodynamic effects of synthetic bradykinin. Am. Heart J. 65, 656–663 (1963)Google Scholar
  44. Schrör, K.: The synthesis of PGE2 and PGF from arachidonic acid by the guinea pig isolated heart preparation. Evidence for the formation of rabbit aorta contracting substance. Naunyn-Schmiedeberg's Arch. Pharmacol. 294, Suppl., R3 (1976)Google Scholar
  45. Schrör, K., Krebs, R., Nookhwun, Ch.: Increase in the coronary vascular resistance by indomethacin in the isolated guinea pig heart preparation in the absence of changes in mechanical performance and oxygen consumption. Europ. J. Pharmacol. 39, 161–169 (1976)Google Scholar
  46. Schrör, K., Moncada, S., Ubatuba, F. B., Vane, J. R.: Formation of prostacyclin (PGX) causes decrease in the coronary vascular resistance during application of arachidonic acid. Naunyn-Schmiedeberg's Arch. Pharmacol. 297, Suppl II, R31 (1977a)Google Scholar
  47. Schrör, K., Moncada, S., Vane, J. R.: Bradykinin — a powerful prostacyclin (PGX) releasing agent in the heart. Abstr. Joint meeting of the German and Italian Pharmacologists, Venice (1977b), p. 360Google Scholar
  48. Schrör, K., Moncada, S., Ubatuba, F. B., Vane, J. R.: Transformation of arachidonic acid and prostaglandin endoperoxidases by the guinea pig heart. Formation of RCS and Prostacyclin. Europ. J. Pharmacol. 47, 103–114 (1978)Google Scholar
  49. Toda, N.: Actions of bradykinin on isolated cerebral and peripheral arteries. Am. J. Physiol. 232, H267-H274 (1977)Google Scholar
  50. Ufkes, J. G. R., van den Meer, C.: The effect of catecholamine depletion on the bradykinin-induced relaxation of isolated smooth muscle. Europ. J. Pharmacol. 33, 141–144 (1975)Google Scholar
  51. Vane, J. R.: The release and fate of vaso-active hormones in the circulation. Br. J. Pharmacol. 35, 209–242 (1969)Google Scholar
  52. Vargaftig, B. B.: The pharmacology of slow reacting substance C and of arachidonic acid. Agents and Actions. 3, 357–365 (1973)Google Scholar
  53. Vogt, W., Suzuki, T., Babilli, S.: Prostaglandins in SRS-C and in the darmstoff preparation from frog intestinal dialysate. In: Endogenous substances affecting the myometrium (V. R. Pickles and R. J. Fitzpatrick, eds.). London, Cambridge: University Press 1966Google Scholar
  54. Wong, P. Y. K., Terragno, D. A., Terragno, N. A., McGiff, J. C.: Dual effects of bradykinin on prostaglandin metabolism: Relationship to the dissimilar vascular action of kinine. Prostaglandins 13, 1113–1125 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • K. Schrör
    • 1
  • U. Metz
    • 1
  • R. Krebs
    • 1
  1. 1.Pharmakologisches Institut der Universität KölnKöln 41Federal Republic of Germany

Personalised recommendations