Microcalorimetric investigations of the metabolism of yeasts. Growth in chemostat cultures on glucose

  • R. Brettel
  • I. Lamprecht
  • B. Schaarschmidt


The growth of yeast cells on glucose in chemostat cultures at dilution rates of up to 0.4 h−1, was investigated using a fermentor linked to a flow microcalorimeter. The weight specific rates of heat production and oxygen consumption showed a linear dependence on the dilution rate but diverged for higher rates due to glucose repression and wash out of the culture. With the media used, it was possible to almost completely determine the energy balance; the biomass formed contained about 60% of the produced energy and 40% was accounted for by heat production.


Oxygen Glucose Biomass Oxygen Consumption Energy Balance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beezer AD (1980) Biological microcalorimetry. Academic Press, LondonGoogle Scholar
  2. Brettel R, Corti L, Lamprecht I, Schaarschmidt B (1972) Stud Biophys 34:71–76Google Scholar
  3. Brettel R (1974) Microcalorimetric measurements of the energy utilisation in chemostat cultures of Saccharomyces cerevisiae. In: Klaushofer H, Sleytr UB (eds), Proceedings of the Fourth International Symposium of Yeasts, vol 1. University of Agriculture, Wien, pp 87–88Google Scholar
  4. Brettel R, Lamprecht I, Schaarschmidt B (1980). Radiat Environ Biophys 18:301–309Google Scholar
  5. Brown HD (1969) Biochemical microcalorimetry. Academic Press, New YorkGoogle Scholar
  6. Cardaso-Duarte JM, Marinko MJ, Uden D van (1977) Flow microcalorimetry of chemostat. In: Dean A (ed) Continuous culture of microorganisms, vol 6 “Applications and New Fields.” Plenum Press, New York, pp 40–48Google Scholar
  7. Eriksson R, Wadsö I (1971) Design and testing of a flow microcalorimeter for studies of aerobic bacterial growth. In: Broda E, Locker A, Springer-Lederer H (eds), Proceedings of the First European Biophysics Congress, Baden, vol 4. Verlag der Wiener Medizinischen Akademie, Wien, pp 319–327Google Scholar
  8. Eriksson R, Holme T (1973) Biotechnol Bioeng Symp No 4. Wiley, New York, pp 581–590Google Scholar
  9. Fiechter A (1975) Continuous cultivation of yeasts. In: Prescott DM (ed) Methods in cell biology, vol 11. Academic Press, New YorkGoogle Scholar
  10. Grainger JNT (1968) The relation between heat production, oxygen consumption and temperature in some poikilotherms, In: Locker A (ed) Quantitative biology of metabolism. Third International Symposium. Springer, Berlin Heidelberg New York, pp 86–90Google Scholar
  11. Harrison DEF (1972) J Appl Chem Biotechnol 22:417–440Google Scholar
  12. Hoogerheide JC (1975a) Radiat Environ Biophys 11:295–307Google Scholar
  13. Hoogerheide JC (1975b) Radiat Environ Biophys 12:281–290Google Scholar
  14. Kubitschek HE (1970) Introduction to research with continuous cultures. Prentice-Hall, Englewood CliffsGoogle Scholar
  15. Küenzi, MT, Fiechter A (1969) Arch Mikrobiol 64:396–407Google Scholar
  16. Lamprecht I, Schaarschmidt B, Stein W (1973) Biophysics 10:177–186Google Scholar
  17. Lamprecht I, Zotin AI (1978) Thermodynamics of biological processes. de Gruyter, Berlin New YorkGoogle Scholar
  18. Lamprecht I (1980) Growth and metabolism in yeasts. In: Beezer AD (ed) Biological microcalorimetry. Academic Press, London, pp 43–112Google Scholar
  19. Leuenberger HGW (1972) Arch Mikrobiol 83:347–358Google Scholar
  20. Meyenburg HK von (1968) Pathol Microbiol 31:117–127Google Scholar
  21. Mor JR, Fiechter A (1968) Biotechnol Bioeng 10:159–196, 787–803Google Scholar
  22. Mor JR, Zimmerli A, Fiechter A (1973) Anal Biochem 52:614–624Google Scholar
  23. Oura E (1973) Biotechnol Bioeng Symp No 4. Wiley, New York, pp 117–227Google Scholar
  24. Pirt SJ (1965) Proc R Soc London Ser B 163:224–231Google Scholar
  25. Spink, C, Wadsö I (1976) Calorimetry as an analytical tool in biochemistry and biology. In: Glick D (ed) Methods in biochemical analysis, vol 23. Wiley-Interscience, New York, pp 1–159Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • R. Brettel
    • 1
  • I. Lamprecht
    • 1
  • B. Schaarschmidt
    • 1
  1. 1.Institut für Biophysik, Freie Universität BerlinBerlin 33

Personalised recommendations