Chemistry of Heterocyclic Compounds

, Volume 20, Issue 11, pp 1218–1221 | Cite as

EPR spectra and π-electronic structures of anion radicals of a nitro-substituted indoline spiropyran

  • L. A. Ulanova
  • E. V. Pykhtina
  • B. V. Tolkachev


Electrochemical generation was used to obtain anion radicals of 1,3,3-trimethyl-5-nitrospiro (indoline-2,2′-[2H]chromene), and their EPR spectra in acetonitrile, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) were recorded. On the basis of an analysis of the hyperfine structure (hfs) of the EPR spectra it was concluded that, as a consequence of the relatively weak interaction of the π-systems of the indoline and benzopyran fragments, cleavage of the bond between the spiro carbon atom and the oxygen atom in the pyran ring does not occur in the formation of the anion radical, and the additional unpaired electron is delocalized in the π-system of the indoline fragment of the molecule.


Oxygen Atom Pyran Sulfoxide Dimethyl Sulfoxide Anion Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Barachevskii, M. A. Gal'bershtam, Yu. E. Gerasimenko, and Yu. N. Gerulaitis, Zh. Vses. Khim. Ova., 19, 85 (1974).Google Scholar
  2. 2.
    R. S. Bertelson, in: Photochromism, G. H. Brown, ed., Wiley-Interscience, New York (1971), p. 49.Google Scholar
  3. 3.
    Y. Hirshberg, J. Chem. Phys., 27, 758 (1957).Google Scholar
  4. 4.
    V. M. Chudakov, L. I. Kartasheva, P. N. Komarov, and A. K. Pikaev, Khim. Vys. Énerg., 15, 63 (1981).Google Scholar
  5. 5.
    V. M. Chudakov, L. I. Kartasheva, P. N. Komarov, and A. K. Pikaev, Khim. Vys. Énerg., 16, 401 (1982).Google Scholar
  6. 6.
    L. A. Ulanova, E. V. Pykhtina, and B. V. Tolkachev, Khim. Vys. Énerg., 15, 443 (1981).Google Scholar
  7. 7.
    A. H. Maki and D. H. Geske, J. Am. Chem. Soc., 83, 1852 (1961).Google Scholar
  8. 8.
    J. Wertz and J. Bolton, Electron Spin Resonance. Elementary Theory and Practical Applications, McGraw-Hill (1972).Google Scholar
  9. 9.
    V. R. Blok, Zh. Fiz. Khim., 52, 1683 (1978).Google Scholar
  10. 10.
    H. M. McKonnell, J. Chem. Phys., 24, 632 (1956).Google Scholar
  11. 11.
    F. Gerson, High-Resolution EPR Spectroscopy, Verlag Chemie (1970).Google Scholar
  12. 12.
    M. Karplus and G. K. Fraenkel, J. Chem. Phys., 35, 1312 (1961).Google Scholar
  13. 13.
    P. H. Rieger and G. K. Fraenkel, J. Chem. Phys., 37, 2795 (1962).Google Scholar
  14. 14.
    P. Smejtek, J. Honzl, and V. Metalova, Collect. Czech. Chem. Commun., 30, 3875 (1965).Google Scholar
  15. 15.
    C. F. Workman and W. R. Koelsch, J. Am. Chem. Soc., 74, 6288 (1952).Google Scholar
  16. 16.
    A. Gordon and R. Ford, The Chemist's Companion, Wiley (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • L. A. Ulanova
    • 1
  • E. V. Pykhtina
    • 1
  • B. V. Tolkachev
    • 1
  1. 1.Scientific-Research Institute of Organic Intermediates and DyesMoscow

Personalised recommendations