Skip to main content
Log in

Are free radicals and not quinones the haptenic species derived from urushiols and other contact allergenic mono- and dihydric alkylbenzenes? The significance of NADH, glutathione, and redox cycling in the skin

  • Original Contributions
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Summary

The induction of allergic contact dermatitis to urushiols from poison ivy and related plants is generally believed to involve an initial oxidation event by which a protein-reactive quinone is formed. However, this does not readily account for the contact allergenicity of closely related mono- and dihydric alkylbenzenes such as the alkylphenols and alkylresorcinols which are not so easily oxidised to quinones in vitro. When the redox processes known to occur in living tissues are taken into consideration, a more plausible unifying mechanism involving the formation of protein-reactive radical species becomes apparent. Experiments described here examine the autoxidation of p-benzoquinone and various mono- and dihydric benzenes and alkylbenzenes, and their reactions with the diphenylpicrylhydrazyl radical, cysteine, glutathione, and NADH. We have also demonstrated that administration to mice of 2-oxo-4-thiazolidine carboxylate, a compound known to elevate intracellular glutathione levels, inhibits the irritancy and sensitising activity of 3-pentadecylphenol. This work suggests that redox cycling in the skin following penetration of allergenic mono- and dihydric alkylbenzenes initially depletes local levels of endogenous reducing equivalents such as glutathione and NADH; once depleted, further cycling results in the uncontrolled generation of radical species which may reasonably be expected to exhibit protein reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aplin RT, Pike WT (1966) Mass spectra of 1,4-dihydroxybenzenes and p-benzoquinones: quinol-quinone interconversion in the heated inlet system of a mass spectrometer. Chem Ind 2009

  2. Bach A, Nikolajew K (1931) über die chemische Beteiligung des Wassers an der oxydierenden Wirkung des Chinons. Zur Theorie der Oxydations-VorgÄnge. Ber Dtsch Chem Ges 64 B: 2769–2772

    Google Scholar 

  3. Baer H (1986) Chemistry and immunochemistry of poisonous Anacardiaceae. Clin Dermatol 4(2):152–159

    Google Scholar 

  4. Banda PW, Sherry AE, Blois MS (1974) The reaction of diphenylpicrylhydrazyl with physiological compounds. Anal Lett 7:41–52

    Google Scholar 

  5. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199–1200

    Google Scholar 

  6. Braude EA, Brook AG, Linstead RP (1954) Hydrogen transfer. Part V. Dehydrogenation reactions with diphenylpicrylhydrazyl. J Chem Soc 3574–3578

  7. Burton H, David SB (1952) Addition reactions of quinones. Part 1. The reaction of cysteine and thiourea and its derivatives with some quinones. J Chem Soc 2193–2196

  8. Byck JS, Dawson CR (1968) Assay of protein-quinone coupling involving compounds structurally related to the active principle of poison ivy. Anal Biochem 25:123–135

    Google Scholar 

  9. Carlson BW, Miller LL (1985) Mechanism of the oxidation of NADH by quinones. Energetics of one-electron and hydride routes. J Am Chem Soc 107:479–485

    Google Scholar 

  10. Cronin E (1980) Contact dermatitis. Churchill Livingstone, Edinburgh

    Google Scholar 

  11. Dawson CR (1956) The chemistry of poison ivy. Trans NY Acad Sci 18:427–443

    Google Scholar 

  12. de Duve C, Baudhuin P (1966) Peroxisomes (microbodies and related particles). Physiol Rev 46:323–357

    Google Scholar 

  13. Dupuis G (1979) Studies on poison ivy. In vitro lymphocyte transformation by urushiol-protein conjugates. Br J Dermatol 101:617–624

    Google Scholar 

  14. Dupuis G, Benezra C (1982) Allergic contact dermatitis to simple chemicals. A molecular approach. Marcel Dekker, New York

    Google Scholar 

  15. Fieser LF, Turner RB (1947) The addition of sulfhydryl derivatives to 2-methyl-1,4-naphthoquinone. J Am Chem Soc 69:2335–2338

    Google Scholar 

  16. Fitzpatrick TB, Becker SW, Lerner AB, Montgomery H (1950) Tyrosinase in human skin: demonstration of its presence and of its role in human melanin formation. Science 112:223–225

    Google Scholar 

  17. Goldschmidt S, Renn K (1922) Zweiwertiger Stickstoff: über das α,α-Diphenyl-Β-trinitrophenylhydrazyl. (IV. Mitteilung über Amin-Oxydation.) Ber Dtsch Chem Ges 55:628–643

    Google Scholar 

  18. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinyl-pyridine. Anal Biochem 106:207–212

    Google Scholar 

  19. Guin JD, Beaman JH (eds) (1986) Plant dermatitis. Clin Dermatol 4(2) and articles therein

  20. Heiss J, Zeller K-P, Rieker A (1969) Zur Kenntnis des chinoiden Zustandes — XVI Massenspektrometrische Untersuchungen an Chinonen, Diphenochinonen und Stilbenchinonen. Org Mass Spectrom 2:1325–1334

    Google Scholar 

  21. Hinsberg O, Himmelschein A (1896) über Oxy- und Aminoderivate des Diphenylsulfons. Ber Dtsch Chem Ges 29:2023–2029

    Google Scholar 

  22. James TH, Weissberger A (1938) Oxidation processes. XI. The autoxidation of durohydroquinone. J Am Chem Soc 60:98–104

    Google Scholar 

  23. James TH, Snell JM, Weissberger A (1938) Oxidation processes. XII. The autoxidation of hydroquinone and of the mono-, di- and trimethylhydroquinones. J Am Chem Soc 60:2084–2093

    Google Scholar 

  24. Jimbow K, Obata H, Pathak MA, Fitzpatrick TB (1974) Mechanism of depigmentation by hydroquinone. J Invest Dermatol 62:436–449

    Google Scholar 

  25. Jusko WJ, Gretch M (1976) Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metab Rev 5:43–140

    Google Scholar 

  26. Kappus H, Sies H (1981) Toxic drug effects associated with oxygen metabolism: redox cycling and lipid peroxidation. Experientia 37:1233–1241

    Google Scholar 

  27. Ketterer B (1986) Detoxication reactions of glutathione and glutathione transferases. Xenobiotica 16:957–973

    Google Scholar 

  28. Kuhn R, Beinert H (1944) über die Umsetzung von Cystein mit Chinon. Ber Dtsch Chem Ges 77:606–608

    Google Scholar 

  29. Landsteiner K, Jacobs J (1936) Studies on the sensitization of animals with simple chemical compounds. II. J Exp Med 64:625–639

    Google Scholar 

  30. Ladenstein R, Epp O, Günzler WA, Flohé L (1986) Glutathione peroxidase on approval. Life Chem Rep 4:37–55

    Google Scholar 

  31. Liberato DJ, Byers VS, Dennick RG, Castagnoli N (1981) Regiospecific attack of nitrogen and sulfur nucleophiles on quinones derived from poison oak/ivy catechols (urushiols) and analogues as models for urushiol-protein conjugate formation. J Med Chem 24:28–33

    Google Scholar 

  32. Malkin R, Malmström BG (1970) The state and function of copper in biological systems. Adv Enzymol 33:177–244

    Google Scholar 

  33. Mallory SB, Hurwitz RM (1986) Black-spot poison-ivy dermatitis. Clin Dermatol 4(2): 149–151

    Google Scholar 

  34. Mason HS (1955) Reactions between quinones and proteins. Nature 175:771–772

    Google Scholar 

  35. Mason HS (1955) Comparative biochemistry of the phenolase complex. Adv Enzymol 16:105–184

    Google Scholar 

  36. Mason HS, Lada A (1954) Allergenic principles of poison ivy. VIII. Immunological properties of a hydrourushiol-albumin conjugate. J Invest Dermatol 22:457–461

    Google Scholar 

  37. McGowan JC, Powell T (1961) Reactions of αα-diphenyl-Β-picrylhydrazyl with phenols. J Chem Soc 2160–2162

  38. Moldéus P, Jernström B (1983) Interaction of glutathione with reactive intermediates. In: Larsson A, Orrenius S, Holmgren A, Mannewik B (eds) Functions of glutathione: biochemical, physiological, toxicological, and clinical aspects. Raven, New York, pp 99–108

    Google Scholar 

  39. Muraca RF, Whittick JS, Daves GD, Friis P, Folkers K (1967) Mass spectra of ubiquinones and ubiquinols. J Am Chem Soc 89:1505–1508

    Google Scholar 

  40. Musso H (1963) Phenol oxidation reactions. Angew Chem (Int Edn) 2:723–735

    Google Scholar 

  41. Nonhebel DC, Walton JC (1974) Free-radical chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  42. Occolowitz JL, Wright AS (1962) 5-(10-Pentadecenyl)resorcinol from Grevillea pyramidalis. Aust J Chem 15:858–861

    Google Scholar 

  43. Prota G, Thomson RH (1976) Melanin pigmentation in mammals. Endeavour 35:32–38

    Google Scholar 

  44. Pugh CEM, Raper HS (1927) The action of tyrosinase on phenols. With some observations on the classification of oxidases. Biochem J 21:1370–1383

    Google Scholar 

  45. Schallreuter KU, Wood JM (1986) The role of thioredoxin reductase in the reduction of free radicals at the surface of the epidermis. Biochem Biophys Res Commun 136:630–637

    Google Scholar 

  46. Smith CV, Hughes H, Lauterburg BH, Mitchell JR (1983) Chemical nature of reactive metabolites determines their biological interactions with glutathione. In: Larsson A, Orrenius S, Holmgren A, Mannewik B (eds) Functions of glutathione: biochemical, physiological, toxicological, and clinical aspects. Raven, New York, pp 125–137

    Google Scholar 

  47. Stahl E, Keller K, Blinn C (1983) Cardanol, a skin irritant in pink pepper. J Med Pl Res 48:5–9

    Google Scholar 

  48. Stone TJ, Waters WA (1964) Aryloxy-radicals. Part III. Electron spin resonance spectra of radicals from some substituted resorcinols. J Chem Soc 4302–4307

  49. Tolbert NE, Essner E (1981) Microbodies: peroxisomes and glyoxysomes. J Cell Biol 91(3, Pt 2):271s-283s

    Google Scholar 

  50. Vallner JJ (1977) Binding of drugs by albumin and plasma protein. J Pharmacol Sci 66:447–465

    Google Scholar 

  51. Venker P, Herzmann H (1960) The capture of free radicals by phenols. Naturwissenschaften 47:133–134

    Google Scholar 

  52. Viña J, Viña JR, Sáez GT (1986) Glutathione: metabolism and physiological functions. Life Chem Rep 4:1–35

    Google Scholar 

  53. Williamson JM, Meister A (1981) Stimulation of hepatic glutathione formation by administration of l-2-oxothiazolidine-4-carboxylate, a 5-oxo-l-prolinase substrate. Proc Natl Acad Sci USA 78:936–939

    Google Scholar 

  54. Yoshida H (1883) Chemistry of lacquer (urushi). Part 1. J Chem Soc 43:472–486

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R.J., Khan, L. & Chung, L.Y. Are free radicals and not quinones the haptenic species derived from urushiols and other contact allergenic mono- and dihydric alkylbenzenes? The significance of NADH, glutathione, and redox cycling in the skin. Arch Dermatol Res 282, 56–64 (1990). https://doi.org/10.1007/BF00505646

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00505646

Key words

Navigation