Skip to main content
Log in

A dynamic technique for measurements of thermophysical properties at high temperatures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A technique is described for the dynamic measurement of selected thermophysical properties of electrically conducting solids in the range 1500 K to the melting temperature of the specimen. The technique is based on rapid resistive selfheating of the specimen from room temperature to any desired high temperature in less than 1 s by the passage of an electrical current pulse through it and on measuring the pertinent quantities, such as current, voltage, and temperature, with millisecond resolution. The technique was applied to the measurement of heat capacity, electrical resistivity, hemispherical total emissivity, normal spectral emissivity, thermal expansion, temperature and energy of solid-solid phase transformations, melting temperature, and heat of fusion. Two possible options for the extension of the technique to measurements above the melting temperature of the specimen are briefly discussed. These options are: (1) submillisecond heating of the specimen and performance of the measurements with microsecond resolution, and (2) performance of the experiments in a near-zero-gravity environment with millisecond resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cezairliyan, High Temp.-High Press. 1:517 (1969).

    Google Scholar 

  2. A. Cezairliyan, Rev. Int. Hautes Temp. Réfract. 7:215 (1970).

    Google Scholar 

  3. A. Cezairliyan and C. W. Beckett, Electrical discharge techniques for measurements of thermodynamic properties of fluids at high temperatures, in Experimental Thermodynamics of Non-Reacting Fluids, B. Le Neindre and B. Vodar, eds. (Butterworths, London, 1975), p. 1161.

    Google Scholar 

  4. A. Cezairliyan, High Temp.-High Press. 11:9 (1979).

    Google Scholar 

  5. A. Cezairliyan, M. S. Morse, H. A. Berman, and C. W. Beckett, J. Res. Nat. Bur. Stand. 74A:65 (1970).

    Google Scholar 

  6. A. Cezairliyan, J. Res. Nat. Bur. Stand. 75C:7 (1971).

    Google Scholar 

  7. G. M. Foley, Rev. Sci. Instrum. 41:827 (1970).

    Google Scholar 

  8. A. Cezairliyan, M. S. Morse, and C. W. Beckett, Rev. Int. Hautes Temp. Réfract. 7:382 (1970).

    Google Scholar 

  9. A. Cezairliyan, J. Res. Nat. Bur. Stand. 75A:565 (1971).

    Google Scholar 

  10. A. Cezairliyan and J. L. McClure, J. Res. Nat. Bur. Stand. 75A:283 (1971).

    Google Scholar 

  11. A. Cezairliyan, J. L. McClure, and C. W. Beckett, J. Res. Nat. Bur. Stand. 75A:1 (1971).

    Google Scholar 

  12. A. Cezairliyan, High Temp.-High Press. 4:453 (1972).

    Google Scholar 

  13. A. Cezairliyan, High Temp.-High Press. 4:541 (1972).

    Google Scholar 

  14. A. Cezairliyan, High Temp. Sci. 4:248 (1972).

    Google Scholar 

  15. A. Cezairliyan, J. Res. Nat. Bur. Stand. 77A:45 (1973).

    Google Scholar 

  16. A. Cezairliyan, J. Res. Nat. Bur. Stand. 77A:333 (1973).

    Google Scholar 

  17. A. Cezairliyan, J. Chem. Thermodynamics 6:735 (1974).

    Google Scholar 

  18. A. Cezairliyan and J. L. McClure, J. Res. Nat. Bur. Stand. 78A:1 (1974).

    Google Scholar 

  19. A. Cezairliyan and F. Righini, J. Res. Nat. Bur. Stand. 78A:509 (1974).

    Google Scholar 

  20. A. Cezairliyan, F. Righini, and J. L. McClure, J. Res. Nat. Bur. Stand. 78A:143 (1974).

    Google Scholar 

  21. A. Cezairliyan and J. L. McClure, J. Res. Nat. Bur. Stand. 79A:431 (1975).

    Google Scholar 

  22. A. Cezairliyan and J. L. McClure, J. Res. Nat. Bur. Stand. 79A:541 (1975).

    Google Scholar 

  23. A. Cezairliyan and J. L. McClure, High Temp. Sci. 7:189 (1975).

    Google Scholar 

  24. A. Cezairliyan and F. Righini, Rev. Int. Hautes. Temp. Réfract. 12:124 (1975).

    Google Scholar 

  25. A. Cezairliyan and F. Righini, Rev. Int. Hautes. Temp. Réfract. 12:201 (1975).

    Google Scholar 

  26. A. Cezairliyan and F. Righini, J. Res. Nat. Bur. Stand. 79A:81 (1975).

    Google Scholar 

  27. A. Cezairliyan, L. Coslovi, F. Righini, and A. Rosso, Radiance temperature of molybdenum at its melting point, in Temperature Measurement—1975, B. F. Billing and T. J. Quinn, eds. (Conference Series No. 26, Institute of Physics, London, 1975), p. 287.

    Google Scholar 

  28. A. Cezairliyan and J. L. McClure, J. Res. Nat. Bur. Stand. 80A:659 (1976).

    Google Scholar 

  29. A. Cezairliyan and J. L. McClure, High Temp.-High Press. 8:461 (1976).

    Google Scholar 

  30. A. Cezairliyan, J. L. McClure, L. Coslovi, F. Righini, and A. Rosso, High Temp.-High Press. 8:103 (1976).

    Google Scholar 

  31. A. Cezairliyan and A. P. Miiller, High Temp.-High Press. 9:319 (1977).

    Google Scholar 

  32. A. Cezairliyan and A. P. Miiller, J. Res. Nat. Bur. Stand. 82:119 (1977).

    Google Scholar 

  33. A. Cezairliyan, J. L. McClure, and R. Taylor, J. Res. Nat. Bur. Stand. 81A:251 (1977).

    Google Scholar 

  34. F. Righini, A. Rosso, L. Coslovi, A. Cezairliyan, and J. L. McClure, Radiance temperature of titanium at its melting point, in Proceedings of the Seventh Symposium on Thermophysical Properties, A. Cezairliyan, ed. (American Society of Mechanical Engineers, New York, 1977), p. 312.

    Google Scholar 

  35. A. Cezairliyan and A. P. Miiller, J. Res. Nat. Bur. Stand. 83:127 (1978).

    Google Scholar 

  36. A. P. Miiller and A. Cezairliyan, High Temp. Sci. 11:41 (1979).

    Google Scholar 

  37. A. Cezairliyan, A. P. Miiller, F. Righini, and A. Rosso, High Temp. Sci. 11:223 (1979).

    Google Scholar 

  38. A. Cezairliyan and A. P. Miiller, Int. J. Thermophys. 1:83 (1980).

    Google Scholar 

  39. A. P. Miiller and A. Cezairliyan, Int. J. Thermophys. 1:217 (1980).

    Google Scholar 

  40. A. P. Miiller and A. Cezairliyan, Int. J. Thermophys. 1:195 (1980).

    Google Scholar 

  41. A. Cezairliyan and A. P. Miiller, Int. J. Thermophys. 1:317 (1980).

    Google Scholar 

  42. A. Cezairliyan, Int. J. Thermophys. 1:417 (1980).

    Google Scholar 

  43. A. P. Miiller and A. Cezairliyan, Int. J. Thermophys. 2:63 (1981).

    Google Scholar 

  44. A. Cezairliyan and A. P. Miiller, Int. J. Thermophys. 3:89 (1982).

    Google Scholar 

  45. A. P. Miiller and A. Cezairliyan, Int. J. Thermophys. 3:259 (1982).

    Google Scholar 

  46. A. Cezairliyan, Int. J. Thermophys. 4:159 (1983).

    Google Scholar 

  47. A. Cezairliyan and A. P. Miiller, Int. J. Thermophys. 4:389 (1983).

    Google Scholar 

  48. A. Cezairliyan and A. P. Miiller, Int. J. Thermophys. 5:315 (1984).

    Google Scholar 

  49. A. P. Miiller and A. Cezairliyan, Thermal expansion of iron during the αγ phase transformation by a transient interferrometric technique, in Thermal Expansion—8, T. A. Hahn, ed. (Plenum Press, New York, in press).

  50. A. Cezairliyan and A. P. Miiller, Int. J. Thermophys. (in press).

  51. A. Cezairliyan, M. S. Morse, G. M. Foley, and N. E. Erickson, Microsecond resolution pulse heating technique for thermophysical measurements at high temperatures, in Proceedings of the Eighth Symposium on Thermophysical Properties, Vol. II, J. V. Sengers, ed. (American Society of Mechanical Engineers, New York, 1982), p. 45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cezairliyan, A. A dynamic technique for measurements of thermophysical properties at high temperatures. Int J Thermophys 5, 177–193 (1984). https://doi.org/10.1007/BF00505499

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00505499

Key words

Navigation