Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 300, Issue 2, pp 179–187 | Cite as

Molecular aspects of catechol and pyrogallol inhibition of liver microsomal lipid peroxidation stimulated by ferrous ion-ADP-complexes or by carbon tetrachloride

  • H. Kappus
  • H. Kieczka
  • M. Scheulen
  • H. Remmer
Article

Summary

Lipid peroxidation was induced in rat liver microsomes either by iron-ADP-complexes or by carbon tetrachloride in the presence of NADPH. Different compounds containing catechol or pyrogallol structures were examined for their activities to inhibit lipid peroxidation in both systems. In general, all compounds tested showed similar inhibitory activities on lipid peroxidation, if induced by ferrous ion-ADP-complexes or by carbon tetrachloride. This inhibition is explained by the suggestion that catechols and pyrogallos inhibit at the lipid site of the membrane, rather than at the enzymic site. Compounds not containing catechol or pyrogallol groups inhibited lipid peroxidation only weakly. O-Methylation resulted in a decrease of the inhibitory effect. Catecholor pyrogallol-derivatives which contained polar functional side chains, like carboxyl- or amino groups showed minor inhibitory effects compared to the esterified or N-alkylated compounds.

Dihydroxychlorpromazine, 2-hydroxy-estradiol and 2-hydroxyethinylestradiol were the most effective inhbitors of microsomal lipid peroxidation (I50-values of 1×10−6 to 2×10−7 M). The inhibitory activity of α-tocopherol, glutathione and ascorbic acid, naturally occurring antioxidants, was about three orders of magnitude lower.

Inhibition of lipid peroxidation induced by NADPH-cytochrome c reductase and iron-ADP-complexes in the presence of NADPH and liposomes was also observed with catechols.

From our results we assume that the molecular structure of a catechol or pyrogallol functional group is a prequisite for an effective inhibition of lipid peroxidation by these chemicals. Furthermore, the results are discussed in relation to the requisite membrane affinity of catechols, pyrogallols and other antioxidants which might be used for inhibition studies on lipid peroxidation in vivo.

Key words

Catechols Pyrogallols Lipid peroxidation Liver microsomes Carbon tetrachloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aust, S. D., Roerig, D. L., Pederson, T. C.: Evidence for superoxide generation by NADPH-cytochrome c reductase of rat liver microsomes. Biochem. Biophys. Res. Commun. 47, 1133–1137 (1972)Google Scholar
  2. Bertelli, A.: New trends in the therapy of liver diseases. Basel: Karger 1975Google Scholar
  3. Bolt, H. M., Kappus, H.: Interaction by 2-hydroxyestrogens with enzymes of drug metabolism. J. Steroid Biochem. 7, 311–313 (1976)Google Scholar
  4. Dybing, E.: Organ and species differences in microsomal activation of methyldopa. Drug Metab. Disp. 4, 513–516 (1976)Google Scholar
  5. Dybing, E., Nelson, D., Mitchell, J. R., Sasame, H. A., Gillette, J. R.: Oxidation of α-methyldopa and other catechols by cytochrome P-450-generated superoxide anion: Possible mechanism of methyldopa hepatitis. Mol. Pharmacol. 12, 911–920 (1976)Google Scholar
  6. Fong, K. L., McCay, P. B., Poyer, J. L., Misra, H. P., Keele, B. B.: Evidence for superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxyl radical formation. Chem. Biol. Interact. 15, 77–89 (1976)Google Scholar
  7. Gelbke, H. P., Ball, P., Haupt, O., Knuppen, R.: Synthesis of 2-hydroxy-ethynylestradiol and 4-hydroxy-ethynylestradiol. Steroids. 22, 151–152 (1973)Google Scholar
  8. Gillette, J. R., Mitchell, J. R., Brodie, B. B.: Biochemical mechanisms of drug toxicity. Ann. Rev. Pharmacol. 14, 271–288 (1974)Google Scholar
  9. Glende, E. A., Hruszkewycz, A. M., Recknagel, R. O.: Critical role of lipid peroxidation in carbon tetrachloride-induced loss of aminopyrine demethylase, cytochrome P-450 and glucose 6-phosphatase. Biochem. Pharmacol. 25, 2163–2170 (1976)Google Scholar
  10. Graziano, J. H., Miller, D. R., Grady, R. W., Cerami, A.: Inhibition of membrane peroxidation in thalassaemic erythrocytes by 2,3-dihydroxybenzoic acid. Br. J. Haematol. 32, 351–356 (1976)Google Scholar
  11. Hochstein, P., Ernster, L.: ADP-activated lipid peroxidation coupled to the TPNH oxidase system of microsomes. Biochem. Biophys. Res. Commun. 12, 388–394 (1963)Google Scholar
  12. Jacobs, H., White, G. P., Tait, G. P.: Iron chelation in cell cultures by two conjugates of 2,3-dihydroxybenzoic acid (2,3-DHB). Biochem. Biophys. Res. Commun. 74, 1626–1630 (1977)Google Scholar
  13. Jose, P. J., Slater, T. F.: The stimulation of lipid peroxidation produced by dimethylnitrosamine in rat liver microsomes in vitro: the effects of promethazine and inhibitors of drug metabolism, and a comparison with previous studies using carbon tetrachloride. Xenobiotica 3, 357–366 (1973)Google Scholar
  14. Kappus, H., Bolt, H. M., Remmer, H.: Affinity of ethynyl-estradiol and mestranol for the uterine estrogen receptor and for the microsomal mixed function oxidase of the liver. J. Steroid Biochem. 4, 121–128 (1973)Google Scholar
  15. Kellogg, E. W., Fridovich, I.: Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system. J. Biol. Chem. 250, 8812–8817 (1975)Google Scholar
  16. Maickel, R. P., Fedynskyj, N. M., Potter, W. Z., Manian, A. A.: Tissue localization of 7- and 8-hydroxychlorpromazines. Toxicol. Appl. Pharmacol. 28, 8–17 (1974)Google Scholar
  17. Marks, F., Hecker, E.: Stoffwechsel und Wirkungsmechanismus der Östrogene XI. Stoffwechsel von (4-14C)2-Hydroxyöstron in Rattenlebermikrosomen. Hoppe-Seylers Z. Physiol. Chem. 350, 69–84 (1969)Google Scholar
  18. McKillop, D., Powis, G.: The metabolism and binding of catecholamines by the hepatic microsomal mixed-function oxidase of the rat. Biochem. J. 158, 135–140 (1976)Google Scholar
  19. Miller, R. W., Rapp, U.: The oxidation of catechols by reduced flavins and dehydrogenases. An electron spin resonance study of the kinetics and inital products of oxidation. J. Biol. Chem. 248, 6084–6090 (1973)Google Scholar
  20. Mishin, V., Pokrovsky, A., Lyakhovich, V. V.: Interactions of some acceptors with superoxide anion radicals formed by the NADPH-specific flavoprotein in rat liver microsomal fractions. Biochem. J. 154, 307–310 (1976)Google Scholar
  21. Misra, H. P., Fridovich, I.: The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 247, 3170–3175 (1972)Google Scholar
  22. Nelson, S. D., Mitchell, J. R., Dybing, E., Sasame, H. A.: Cytochrome P-450-mediated oxidation of 2-hydroxyestrogens to reactive intermediates. Biochem. Biophys. Res. Commun. 70, 1157–1165 (1976)Google Scholar
  23. O'Brien, P. J., Rahimtula, A.: Involvement of cytochrome P-450 in the intracellular formation of lipid peroxides. J. Agr. Food Chem. 23, 154–158 (1975)Google Scholar
  24. Omura, T., Takesue, S.: A new method for simultaneous purification of cytochrome b5 and NADPH-cytochrome c reductase from rat liver microsomes. J. Biochem. 67, 249–257 (1970)Google Scholar
  25. Orrenius, S., Dallner, G., Ernster, L.: Inhibition of the TPNH-linked lipid peroxidation of liver microsomes by drugs undergoing oxidative demethylation. Biochem. Biophys. Res. Commun. 14, 329–334 (1964)Google Scholar
  26. Pederson, T. C., Aust, S. D.: NADPH-dependent lipid peroxidation by purified NADPH-cytochrome c reductase from rat liver microsomes. Biochem. Biophys. Res. Commun. 48, 789–795 (1972)Google Scholar
  27. Pederson, T. C., Aust, S. D.: The role of superoxide and singlet oxygen in lipid peroxidation promoted by xanthine oxidase. Biochem. Biophys. Res. Commun. 52, 1071–1078 (1973)Google Scholar
  28. Pederson, T. C., Aust, S. D.: The mechanism of liver microsomal lipid peroxidation. Biochim. Biophys. Acta 385, 232–241 (1975)Google Scholar
  29. Pederson, T. C., Buege, J. A., Aust, S. D.: Microsomal electron transport—the role of reduced nicotinamide adenine dinucleotide phosphate-cytochrome c reductase in liver microsomal lipid peroxidation. J. Biol. Chem. 248, 7134–7141 (1973)Google Scholar
  30. Plaa, G. L., Witschi, H.: Chemicals, drugs, and lipid peroxidation. Ann. Rev. Pharmacol. Toxicol. 16, 125–141 (1976)Google Scholar
  31. Pryor, W. A.: Free radicals in biology, vol. 1 and 2. New York: Academic Press 1976Google Scholar
  32. Pryor, W. A., Stanley, J. P., Blair, E.: Autoxidation of polyunsaturated fatty acids: II. A suggested mechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides. Lipids 11, 370–379 (1976)Google Scholar
  33. Rajan, K. S., Manian, A. A., Davis, J. M., Skripkus, A.: Studies on the metal chelation of chlorpromazine and its hydroxylated metabolites. Adv. Biochem. Psychopharmacol. 9, 571–591 (1974)Google Scholar
  34. Recknagel, R. O., Glende, E. A.: Carbon tetrachloride hepatotoxicity: An example of lethal cleavage. CRC crit. Rev. Toxicol. 2, 263–297 (1973)Google Scholar
  35. Reiner, O., Athanassopoulos, S., Hellmer, K. H., Murray, R. E., Uehleke, H.: Bildung von Chloroform aus Tetrachlorkohlenstoff in Lebermikrosomen. Lipidperoxidation und Zerstörung von Cytochrome P-450. Arch. Toxicol. 29, 219–233 (1972)Google Scholar
  36. Remmer, H., Greim, H., Schenkman, J. B., Estabrook, R. W.: Methods for the elevation of hepatic microsomal mixed function oxidase levels and cytochrome P-450. Meth. Enzymol. 10, 703–708 (1967)Google Scholar
  37. Remmer, H., Scheulen, M., Kappus, H., Bolt, H. M.: The significance of covalent binding of catechols to proteins in vivo. Arch. Toxicol. (in press, 1977)Google Scholar
  38. Rotman, A., Daly, J. W., Creveling, C. R.: Oxygen-dependent reaction of 6-hydroxydopamine, 5,6-dihydroxytryptamine and related compounds with proteins in vitro: a model for cytotoxicity. Mol. Pharmacol. 12, 887–899 (1976)Google Scholar
  39. Schaefer, A., Komlos, M., Seregi, A.: Lipid peroxidation as the cause of the ascorbic acid induced decrease of adenosine triphosphatase activities of rat brain microsomes and its inhibition by biogenic amines and psychotropic drugs. Biochem. Pharmacol. 24, 1781–1786 (1975)Google Scholar
  40. Scheller, F., Renneberg, R., Mohr, P., Jänig, G. R., Ruckpaul, K.: Peroxidatic activity of liver microsomal cytochrome P-450. FEBS Letters 71, 309–312 (1976)Google Scholar
  41. Scheulen, M., Wollenberg, P., Bolt, H. M., Kappus, H., Remmer, H.: Irreversible binding of dopa and dopamine metabolites to protein by rat liver microsomes. Biochem. Biophys. Res. Commun. 66, 1396–1400 (1975)Google Scholar
  42. Scheulen, M., Kappus, H., Bolt, H. M.: Microsomal oxidation of isoproterenol and irreversible protein binding of metabolites. Biochem. Pharmacol., Suppl. (in press, 1977)Google Scholar
  43. Sillen, L. G., Martell, M. E.: Stability of constants of metal ion complexes. London: Chemical Society 1971Google Scholar
  44. Slater, T. F.: The inhibitory effects in vitro of phenothiazines and other drugs on lipid-peroxidation systems in rat liver microsomes, and their relationship to the liver necrosis produced by carbon tetrachloride. Biochem. J. 106, 155–160 (1968)Google Scholar
  45. Slater, T. F.: Free radical mechanisms in tissue injury. London: Pion Ltd. 1972Google Scholar
  46. Slater, T. F., Sawyer, B. C.: The stimulatory effects of carbon tetrachloride and other halogenoalkanes on peroxidative reactions in rat liver fractions in vitro—general features of the systems used. Biochem. J. 123, 805–814 (1971a)Google Scholar
  47. Slater, T. F., Sawyer, B. C.: The stimulatory effects of carbon tetrachloride on peroxidative reactions in rat liver fractions in vitro—interaction sites in the endoplasmic reticulum. Biochem. J. 123, 815–821 (1971b)Google Scholar
  48. Slater, T. F., Sawyer, B. C.: The stimulatory effects of carbon tetrachloride on peroxidative reactions in rat liver fractions in vitro—inhibitory effects of free-radical scavengers and other agents. Biochem. J. 123, 823–828 (1971c)Google Scholar
  49. Smuckler, E. A., Arrhenius, E., Hultin, T.: Alterations in microsomal electron transport, oxidative N-demethylation and azodye cleavage in carbon tetrachloride and dimethylnitrosamine induced liver injury. Biochem. J. 103, 55–64 (1967)Google Scholar
  50. Stubenrauch, G., Gelbke, H. P., Knuppen, R.: Pyrogalloloestrogens—a new group of oestrogen metabolites. Hoppe-Seylers Z. Physiol. Chem. 357, 75–80 (1976)Google Scholar
  51. Sugioka, K., Nakano, M.: A possible mechanism of the generation of singlet molecular oxygen in NADPH-dependent microsomal lipid peroxidation. Biochim. Biophys. Acta 423, 203–216 (1976)Google Scholar
  52. Tayler, S. L., Tappel, A. L.: Effect of dietary antioxidants and phenobarbital pretreatment on microsomal lipid peroxidation and activation by carbon tetrachloride. Life Sci. 19, 1151–1160 (1976)Google Scholar
  53. Torrielli, M. V., Slater, T. F.: Inhibition of NADPH-cytochrome c reductase by propyl gallate. Biochem. Pharmacol. 20, 2027–2032 (1971)Google Scholar
  54. Uemura, T., Chiesara, E., Cova, D.: Interaction of epinephrine metabolites with the liver microsomal electron transport system. Mol. Pharmacol. 13, 196–215 (1977)Google Scholar
  55. Ugazio, G., Torrielli, M. V., Burdino, E., Sawyer, B. C., Slater, T. F.: Long-range effects of products of carbon tetrachloride-stimulated lipid peroxidation. Biochem. Soc. Transact. 4, 353–356 (1976)Google Scholar
  56. Ullrich, V., Schnabel, K. H.: Formation and binding of carbanions by cytochrome P-450 of liver microsomes. Drug Metab. Disp 1, 176–183 (1973)Google Scholar
  57. Wills, E. D.: Lipid peroxide formation in microsomes—general considerations. Biochem. J. 113, 315–324 (1969a)Google Scholar
  58. Wills, E. D.: Lipid peroxide formation in microsomes—the role of non-haem iron. Biochem. J. 113, 324–332 (1969b)Google Scholar
  59. Wills, E. D.: Lipid peroxide formation in microsomes—relationship of hydroxylation to lipid peroxide formation. Biochem J. 113, 333–341 (1969c)Google Scholar
  60. Wolf, C. R., Mansuy, D., Nastainczyk, W., Deutschmann, G., Ullrich, V.: The reduction of polyhalogenated methanes by liver microsomal cytochrome P-450. Mol. Pharmacol. 13, 698–705 (1977)Google Scholar
  61. Wollenberg, P., Scheulen, M., Bolt, H. M., Kappus, H., Remmer, H.: Wirkung von 2-Hydroxyöstradiol-17β auf den NADPH-abhängigen Elektronentransport in Rattenleber-Mikrosomen in vitro. Hoppe-Seylers Z. Physiol. Chem. 357, 351–357 (1976)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • H. Kappus
    • 1
  • H. Kieczka
    • 1
  • M. Scheulen
    • 1
  • H. Remmer
    • 1
  1. 1.Institut für Toxikologie der Universität TübingenTübingenFederal Republic of Germany

Personalised recommendations