Skip to main content
Log in

DMPP and the adrenergic nerve terminal: Mechanisms of noradrenaline release from vesicular and extravesicular compartments

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

DMPP (1,1-dimethyl-4-phenylpiperazine) in various concentrations between 1.6×10−6 M and 6.2×10−5 M was infused into isolated rabbit hearts to study the neuronal release and uptake of noradrenaline.

  1. 1.

    In the untreated heart, 2.2×10−5 M or 6.2×10−5 M DMPP caused an overflow of noradrenaline (22 or 300 ng/g, respectively) that was Ca2+-dependent. During infusion of 1.6×10−5 M DMPP, however, a Ca2+-independent overflow of noradrenaline was detected which was about 3.5-fold higher than the resting overflow (0.22 ng g−1 min−1) of noradrenaline and was maintained over the 21-min period of infusion of DMPP; the rate of contraction (155 beats/min) was also markedly elevated by maximally 60 beats/min.

  2. 2.

    The isolated heart removed about 50% of infused noradrenaline (3×10−8 M) from the perfusion fluid. The removal, which reflects neuronal netuptake, was reversibly reduced to about 5% during exposure to 1.6×10−5 M DMPP; half-maximal inhibition was caused by 3×10−6 M DMPP.

  3. 3.

    After pretreatment with reserpine and pargyline, the heart was perfused for 30 min with 1.2×10−6 M (−)noradrenaline (3H-labelled or unlabelled) and then washed with an amine-free solution. DMPP was infused beginning at 20 or 30 min after the start of the wash-out period, i.e. at a time when the efflux of noradrenaline originated from the adrenergic neurone. DMPP in concentrations of 1.6×10−5 M and 6.2×10−5 M caused an about 10-fold increase of the rate of efflux which was not altered by Ca2+-deprivation or by 10−5 M hexamethonium. Half-maximal facilitation was observed using 3.5×10−6 M DMPP. The facilitated efflux reached a maximum after 3 min and then declined gradually. The decline consists of 3 components with half-times of 3, 7 and 65 min.

  4. 4.

    It is concluded that various non-nicotinic effects of DMPP on the adrenergic neurone were separated from the well-known nicotinic release of noradrenaline by using low concentrations (<2×10−5 M). The non-nicotinic increase in heart rate and in transmitter overflow evoked by DMPP presumably was due to (1) inhibition of re-uptake of spontaneously released noradrenaline and (2) to displacement of vesicular noradrenaline. Furthermore, the drug increased the release of noradrenaline from extravesicular stores (present after inhibition of monoaminoxidase), presumably by acceleration of the transmembranal efflux and by displacement of noradrenaline from extravesicular binding sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, G. S., Rand, M. J., Story, D. F.: Effects of McN-A-343 and DMPP on the uptake and release of 3H-noradrenaline by guinea-pig atria. Br. J. Pharmacol. 45, 480–489 (1972)

    Google Scholar 

  • Bevan, J. A., Haeusler, G.: Electrical events associated with the action of nicotine at the adrenergic nerve terminals. Arch. Int. Pharmacodyn. Ther. 218, 84–95 (1975)

    Google Scholar 

  • Bevan, J. A., Su, Che: Uptake of nicotine by the sympathetic nerve terminals in the blood vessel. J. Pharmacol. Exp. Ther. 182, 419–426 (1972)

    Google Scholar 

  • Bhagat, B., Robinson, J. M., West, W. L.: Mechanism of sympathomimetic responses of isolated guinea-pig atria to nicotine and DMPP. Br. J. Pharmacol. 30, 470–477 (1967)

    Google Scholar 

  • Boenisch, H., Graefe, K.-H.: Saturation kinetics of uptake 1 and of the neuronal steady-state accumulation of 3H-(−)noradrenaline in the reserpine-pretreated rabbit heart. Naunyn-Schmiedeberg's Arch. Pharmacol. 297, R 48 (1977)

    Google Scholar 

  • Burn, J. H., Gibbons, W. R.: The part played by calcium in determing the response to stimulation of sympathetic postganglionic fibres. Br. J. Pharmacol. 22, 540–548 (1964)

    Google Scholar 

  • Cabrera, R., Torrance, R. W., Viveros, H.: The action of acetylcholine and other drugs upon the terminal parts of the postganglionic sympathetic fibre. Br. J. Pharmacol. 27, 51–63 (1966)

    Google Scholar 

  • Chen, G., Portman, R., Wickel, A.: Pharmacology of 1,1-dimethyl-4-phenyl-piperazinium iodide, a ganglion stimulating agent. J. Pharmacol. Exp. Ther. 103, 330–336 (1951)

    Google Scholar 

  • Chiba, S., Tamura, K., Kubota, K., Hashimoto, K.: Pharmacologic analysis of nicotine and dimethylphenylpiperazinium on pacemaker activity of the SA node in the dog. Jpn. J. Pharmacol. 22, 645–651 (1972)

    Google Scholar 

  • Engel, U., Löffelholz, K.: Presence of muscarinic inhibitory and absence of nicotinic excitatory receptors at the terminal sympathetic nerves of chicken heart. Naunyn-Schmiedeberg's Arch. Pharmacol. 295, 225–230 (1976)

    Google Scholar 

  • Enna, S. J., Shore, P. A.: On the nature of the adrenergic neuron extragranular amine binding site. J. Neural Transm. 35, 125–135 (1974)

    Google Scholar 

  • Giachetti, A., Hollenbeck, R. A.: Extravesicular binding of noradrenaline and guanethidine in the adrenergic neurones of the rat heart: a proposed site of action of adrenergic neurone blocking agents. Br. J. Pharmacol. 58, 497–504 (1976)

    Google Scholar 

  • Green, A. L., Marshall, I. G.: Nicotinic stimulant action of some tolyl and xylyl analogues of 1,1-dimethyl-4-phenylpiperazine (DMPP). Br. J. Pharmacol. 43, 370–378 (1971)

    Google Scholar 

  • Haefely, W.: Electrophysiology of the adrenergic neuron. In: Catecholamines, Handbook of Experimental Pharmacology, Vol. 33 (Blaschko, H., Muscholl, E., eds.), pp. 661–725. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Haefely, W.: The effects of 1,1-dimethyl-4-phenylpiperazinium (DMPP) in the cat superior cervical ganglion in situ. Naunyn-Schmiedeberg's Arch. Pharmacol. 281, 57–91 (1974)

    Google Scholar 

  • Haeusler, G., Thoenen, H., Haefely, W., Huerlimann, A.: Electrical events in cardiac adrenergic nerves and noradrenaline release from the heart induced by acetylcholine and potassium chloride. Naunyn-Schmiedeberg's Arch. Pharmak. exp. Path. 261, 389–411 (1968)

    Google Scholar 

  • Holbach, H.-J., Löffelholz, K.: Differences between noradrenaline release and enhancement of noradrenaline efflux evoked by DMPP in the rabbit heart. Naunyn-Schmiedeberg's Arch. Pharmacol. 287, R6 (1975)

    Google Scholar 

  • Kosterlitz, H. W., Lees, G. M.: Interrelationships between adrenergic and cholinergic mechanisms. In: Catecholamines, Handbook of Experimental Pharmacology, Vol. 33 (Blaschko, H., Muscholl, E., eds.), pp. 762–812. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Kotyk, A., Janáček, K.: Cell membrane transport. New York-London Plenum Press 1970

    Google Scholar 

  • Lindmar, R.: Die Wirkung von 1,1-Dimethyl-4-phenylpiperazinium-jodid am isolierten Vorhof im Vergleich zur Tyramin-und Nicotinwirkung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 242, 458–466 (1962)

    Google Scholar 

  • Lindmar, R., Löffelholz, K.: Differential effects of hypothermia on neuronal efflux, release and uptake of noradrenaline. Naunyn-Schmiedeberg's Arch. Pharmacol. 274, 410–414 (1972)

    Google Scholar 

  • Lindmar, R., Löffelholz, K.: Neuronal and extraneuronal uptake and efflux of catecholamines in the isolated rabbit heart. Naunyn-Schmiedeberg's Arch. Pharmacol. 284, 63–92 (1974a)

    Google Scholar 

  • Lindmar, R., Löffelholz, K.: The neuronal efflux of noradrenaline: dependency on sodium and facilitation by ouabain. Naunyn-Schmiedeberg's Arch. Pharmacol. 284, 93–100 (1974b)

    Google Scholar 

  • Lindmar, R., Muscholl, E.: Die Wirkung von Cocain, Guanethidin, Reserpin, Hexamethonium, Tetracain und Psicain auf die Noradrenalin-Freisetzung aus dem Herzen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 242, 214–227 (1961)

    Google Scholar 

  • Lindinar, R., Muscholl, E.: Die Wirkung von Pharmaka auf die Elimination von Noradrenalin aus der Perfusionsflüssigkeit und die Noradrenalinaufnahme in das isolierte Herz. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 247, 469–492 (1964)

    Google Scholar 

  • Lindmar, R., Muscholl, E.: Die Aufnahme von α-Methylnoradrenalin in das isolierte Kaninchenherz und seine Freisetzung durch Reserpin und Guanethidin in vivo. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 249, 529–548 (1965)

    Google Scholar 

  • Lindmar, R., Löffelholz, K., Muscholl, E.: Unterschiede zwischen Tyramin und Dimethylphenylpiperazin in der Ca2+-Abhängigkeit und im zeitlichen Verlauf der Noradrenalin-Freisetzung am isolierten Kaninchenherzen. Experientia 23, 933–934 (1967)

    Google Scholar 

  • Löffelholz, K.: Autoinhibition of nicotinic release of noradrenaline from postganglionic sympathetic nerves. Naunyn-Schmiedebergs Arch. Pharmak. 267, 49–63 (1970a)

    Google Scholar 

  • Löffelholz, K.: Nicotinic drugs and postganglionic sympathetic transmission. Naunyn-Schmiedebergs Arch. Pharmak. 267, 64–73 (1970b)

    Google Scholar 

  • Muscholl, E.: Cholinomimetic drugs and release of the adrenergic transmitter. In: New aspects of storage and release mechanisms of catecholamines (Schümann, H. J., Kroneberg, G., eds.), pp. 168–186. Berlin-Heidelberg-New York: Springer 1970

    Google Scholar 

  • Nedergaard, O. A., Schrold, J.: The mechanism of action of nicotine on vascular adrenergic neuroeffector transmission. Eur. J. Pharmacol. 42, 315–329 (1977)

    Google Scholar 

  • Paton, D. M.: Mechanism of efflux of noradrenaline from adrenergic nerves in rabbit atria. Br. J. Pharmacol. 49, 614–627 (1973)

    Google Scholar 

  • Paton, D. M.: Structure-activity relations for the acceleration of efflux of noradrenaline from adrenergic nerves in rabbit atria by sympathomimetic amines. Can. J. Physiol. Pharmacol. 53, 822–829 (1975)

    Google Scholar 

  • Paton, D. M.: Characteristics of efflux of noradrenaline from adrenergic neurons. In: The mechanism of neuronal and extraneuronal transport of catecholamines (Paton, D. M., ed.), pp. 155–174. New York: Raven Press 1976

    Google Scholar 

  • Ross, S. B.: Structural requirements for uptake into catecholamine neurons. In: The mechanism of neuronal and extraneuronal transport of catecholamines (Paton, D. M., ed.), pp. 67–93. New York: Raven Press 1976

    Google Scholar 

  • Starke, K.: Regulation of noradrenaline release by presynaptic receptor systems. Rev. Physiol. Biochem. Pharmacol. 77, 1–124 (1977)

    Google Scholar 

  • Su, Che, Bevan, J. A.: Blockade of the nicotine-induced norepinephrine release by cocaine, phenoxybenzamine and desipramine. J. Pharmacol. Exp. Ther. 175, 533–540 (1970)

    Google Scholar 

  • Trendelenburg, U.: Factors influencing the concentration of catecholamines at the receptors. In: Catecholamines, Handbook of Experimental Pharmacology, Vol. 33 (Blaschko, H., Muscholl, E., eds.), pp. 726–761. Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  • Westfall, T. C., Brasted, M.: The mechanism of action of nicotine on adrenergic neurons in the perfused guinea-pig heart. J. Pharmacol. Exp. Ther. 182, 409–418 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft and was part of the M.D.-thesis of H.J.H.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holbach, H.J., Lindmar, R. & Löffelholz, K. DMPP and the adrenergic nerve terminal: Mechanisms of noradrenaline release from vesicular and extravesicular compartments. Naunyn-Schmiedeberg's Arch. Pharmacol. 300, 131–138 (1977). https://doi.org/10.1007/BF00505043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00505043

Key words

Navigation