HPLC determination of the base composition of yeast tRNA

  • M. G. Beretta
  • L. Colombo
  • M. Santandrea
  • C. Scolastico
  • P. L. Manachini
Biotechnology

Summary

A relatively simple procedure was developed to quantitate normal and methylated tRNA bases by isocratic HPLC. tRNA was extracted with phenol from lyophilyzed cells, purified and precipitated with isopropanol. After perchloric acid hydrolysis, the samples were subjected to HPLC analysis. The mole % composition of normal and methylated bases was determined in yeasts grown on unusual carbon sources including hydrocarbons and light alcohols.

Normal and methylated base composition of total tRNA depends on the microorganism and on the carbon source used.

Keywords

Methylated Hydrolysis HPLC Phenol Hydrocarbon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldacci, G., Falcone, C., Frontali, L., Macino, G., Palleschi, C. (1976). tRNA in mitochondria from Saccharomyces cerevisiae grown in different physiological conditions. In: The genetic function of mitochondrial DNA, C. Saccone and A.M. Kroon, eds., pp. 305–312. Amsterdam: Elsevier/North-Holland Biomedical PressGoogle Scholar
  2. Baldacci, G., Falcone, C., Frontali, L., Macino, G., Palleschi, C. (1977). Differences in mitochondrial isoaccepting t-RNAs from S. cerevisiae as a function of growth conditions. In: Mitochondria-Genetics and biogenesis of mitochondria, W. Bandlon, R.J. Schweyen, K. Wolf, F. Kaudewitz, eds., pp. 571–574. Berlin, New York: Walter de Gruyter Co.Google Scholar
  3. Craveri, R. (1978). Technol. Aliment. 1, 51–61Google Scholar
  4. Chen, S.L., Peppler, H.J. (1978). Dev. Industr. Microbiol. Vol. 19, Chapter 7Google Scholar
  5. Essigmann, J.M., Busby, W.F., Wogan, G. N. (1977). Anal. Biochem. 81, 384–394Google Scholar
  6. Watanabe, K., Shiuma, M., Oshima, T. (1976). Biochem. Biophys. Res. Commun. 72, 1137–1144Google Scholar
  7. Holley, R.W. (1963). Biochem. Biophys. Res. Commun. 10, 186–188Google Scholar
  8. Lindhal, T., Fresco, J.R. (1967). Methods in enzymology, L. Grossman and K. Moldave, eds., vol. 12A, pp. 601–607Google Scholar
  9. Holley, R.W. (1967). Methods in enzymology, L. Grossman and K. Moldave, eds. vol. 12A, pp. 596–598Google Scholar
  10. Johnson, J. (1977). Yeasts for food and other purposes. Noyes Data Co.Google Scholar
  11. Letham, D.S., Wettenhall, R.E.H. (1977). Transfer RNA and cytokinins. In: The ribonucleic acids, P.R. Stewart and D.S. Letham, eds., pp. 129–193. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  12. Marshak, A., Vogel, M. (1951). J. Biol. Chem. 189, 597–605Google Scholar
  13. Kirkland, J.J. (1970). J. Chromatogr. Sci. 8, 72–75Google Scholar
  14. Roblin, R. (1968). J. Mol. Biol. 31, 51–61Google Scholar
  15. Martin, R., Schneller, J.M., Stahl, A.J.C., Dirheimer, G. (1976). Biochem. Biophys. Res. Commun. 70, 997–1002Google Scholar
  16. Soave, C., Nucca, R., Sala, E., Viotti, A., Galante, E. (1973). Eur. J. Biochem. 32, 392–400Google Scholar
  17. Zubay, G. (1962). J. Mol. Biol. 4, 347–356Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. G. Beretta
    • 1
  • L. Colombo
    • 1
  • M. Santandrea
    • 1
  • C. Scolastico
    • 1
  • P. L. Manachini
    • 2
  1. 1.Istituto di Chimica OrganicaMilanoItaly
  2. 2.Cattedra di Microbiologia IndustrialeMilanoItaly

Personalised recommendations