International Journal of Thermophysics

, Volume 1, Issue 2, pp 177–184 | Cite as

Optimized parameters and exponents of Mie (n,m) intermolecular potential energy function based on the shape of molecules

  • M. Edalat
  • S. S. Lan
  • F. Pang
  • G. A. Mansoori


Through the use of the second virial coefficient data, optimized parameters and exponents of the Mie (n,m) potential energy function are derived for a number of symmetric groups of molecules. In the optimizations performed, parameters of the potential function are varied for each molecule, but the exponents of the potential function are taken as functions of the shape of the groups of molecules considered. It is concluded that the attractive exponent, m = 7, is shared by all the symmetric groups considered. The repulsive exponent, n, is varied according to the shape of the molecules. Also, in this report, newly calculated parameters of the Lennard-Jones (12,6) and Mie (14,7) potential energy functions for 33 different symmetric and nonsymmetric molecules are reported. Results indicate that, generally, the Mie (14,7) pair-potential energy function is a better fit for the second virial coefficient data than the Lennard-Jones (12,6) function.

Key Words

intermolecular potential energy function second virial coefficient Mie potential function Lennard-Jones potential function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).Google Scholar
  2. 2.
    D. E. Williams, J. Chem. Phys. 47:4680 (1967).Google Scholar
  3. 3.
    A. D. McLean and M. Yoshimine, J. Chem. Phys. 47:3256 (1967).Google Scholar
  4. 4.
    P. A. Straub and A. D. McLean, Theort. Chim. Acta (Berl) 32:227 (1974).Google Scholar
  5. 5.
    J. E. Lennard-Jones, Proc Phys. Soc. London 43:461 (1931); Physica 4:941 (1937).Google Scholar
  6. 6.
    G. Mie, Ann. Physik, Lpz. 11:657 (1903).Google Scholar
  7. 7.
    A. Dalgarno, Intermolecular Forces J. O. Hirschfelder, ed. (Wiley, New York, (1967).Google Scholar
  8. 8.
    J. M. Prausnitz, Molecular Thermodynamics of Fluid-Phase Equilibria (Prentice-Hall, Englewood Cliffs, N. J., 1969).Google Scholar
  9. 9.
    J. E. Lennard-Jones, Proc. Roy. Soc. A106:463 (1924).Google Scholar
  10. 10.
    A. E. Sherwood and J. M. Prausnitz, J. Chem. Phys. 41:429 (1964).Google Scholar
  11. 11.
    D. R. Douslin, Progress in international research on thermodynamics and transport properites (Princeton Univerity, 1962).Google Scholar
  12. 12.
    T. Kihara, Rev. Mod. Phys. 25:39 (1952).Google Scholar
  13. 13.
    R. C. Ahlert, G. Biguria, and J. Gaston Jr., AIChE J. 14:816 (1968); J. Chem. Phys. 74:1639 (1970).Google Scholar
  14. 14.
    R. Y. Koo and W. J. Hsu, J. Chem. Phys. 52:2392 (1970).Google Scholar
  15. 15.
    G. Boato and G. Casanova, Physica 27:571 (1961).Google Scholar
  16. 16.
    L. F. Epstein and G. M. Roc, J. Chem. Phys. 9:1320 (1951); G. M. Roe, L. F. Epstein, and M. D. Powers, J. Chem. Phys. 20:1665 (1952); L. F. Epstein, J. Chem. Phys. 20:1670 (1952).Google Scholar
  17. 17.
    L. G. Nosanov and J. E. Mayer, J. Chem. Phys. 28:874 (1958).Google Scholar
  18. 18.
    L. S. Tee, S. Gotoh, and W. E. Steward, Ind. Eng. Chem. Fundamentals 5:356, 363 (1966).Google Scholar
  19. 19.
    S. D. Hamon and J. A. Lambert, Austral. J. Chem. 1:1 (1954).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • M. Edalat
    • 1
  • S. S. Lan
    • 1
  • F. Pang
    • 1
  • G. A. Mansoori
    • 1
  1. 1.Department of Energy EngineeringUniversity of Illinois at Chicago CircleChicagoUSA

Personalised recommendations