International Journal of Thermophysics

, Volume 13, Issue 2, pp 303–313 | Cite as

A refined evaluation of the gas-phase dimerization thermodynamics of the ClO radical

  • Z. Slanina
  • F. Uhlík
Article

Abstract

The title reaction was treated as a convolution of three partial dimerizations, viz., formation of ClOOCl, ClClO2, or ClOClO isomer. Energetics of the dimerizations are derived from a fit to available data in combination with recent quantum-chemical calculations. The thermodynamics of the processes is evaluated with the help of partition functions with the calculated molecular parameters, while due respect has been paid to the dimer isomerism. The isomerism can be particularly significant in evaluating the heat-capacity term, increasing it by more than 10% at some temperatures. The most reliable values of the standard thermodynamic dimerization terms are selected for further applications, especially for elucidating ozone-depletion mechanisms.

Key words

ClO(g) radical dimerization generalized third-law analysis isomeric mixtures ozone depletion mechanisms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Slanina, Contemporary Theory of Chemical Isomerism (Academia and Reidel, Prague and Dordrecht, 1986).Google Scholar
  2. 2.
    Z. Slanina, J. Fluor. Chem. 6:465 (1975).Google Scholar
  3. 3.
    Z. Slanina, Chem. Phys. Lett. 52:117 (1977).Google Scholar
  4. 4.
    Z. Slanina, Chem. Phys. Lett. 173:164 (1990).Google Scholar
  5. 5.
    N. Basco and J. E. Hunt, Int. J. Chem. Kinet. 11:649 (1979).Google Scholar
  6. 6.
    R. A. Cox and G. D. Hayman, Nature 332:796 (1988).Google Scholar
  7. 7.
    P. Crutzen and F. Arnold, Nature 324:651 (1986).Google Scholar
  8. 8.
    J. W. Barrett, P. M. Solomon, R. L. de Zafra, M. Jaramillo, L. Emmons, and A. Parrish, Nature 336:455 (1988).Google Scholar
  9. 9.
    R. T. Watson, in Ozone Depletion, Health and Environmental Consequences, R. R. Jones and T. Wigley, eds. (Wiley, Chichester, 1989).Google Scholar
  10. 10.
    M. M. Rochkind and G. C. Pimentel, J. Chem. Phys. 46:4481 (1967).Google Scholar
  11. 11.
    W. G. Alcock and G. C. Pimentel, J. Chem. Phys. 48:2373 (1968).Google Scholar
  12. 12.
    L. Andrews and J. I. Raymond, J. Chem. Phys. 55:3087 (1971).Google Scholar
  13. 13.
    F. K. Chi and L. Andrews, J. Phys. Chem. 77:3062 (1973).Google Scholar
  14. 14.
    S. C. Bhatia and J. H. Hall, Jr., Inorg. Chem. 20:629 (1981).Google Scholar
  15. 15.
    R. C. Loupec and J. Potier, J. Chim. Phys. 80:449 (1983).Google Scholar
  16. 16.
    L. T. Molina and M. J. Molina, J. Phys. Chem. 91:433 (1987).Google Scholar
  17. 17.
    M. J. Molina, T. L. Tso, L. T. Molina, and F. C. Y. Wang, Science 238:1253 (1987).Google Scholar
  18. 18.
    M. P. McGrath, K. C. Clemitshaw, F. S. Rowland, and W. J. Hehre, Geophys. Res. Lett. 15:883 (1988).Google Scholar
  19. 19.
    F. Jensen and J. Oddershede, J. Phys. Chem. 94:2235 (1990).Google Scholar
  20. 20.
    M. P. McGrath, K. C. Clemitshaw, F. S. Rowland, and W. J. Hehre, J. Phys. Chem. 94:6126 (1990).Google Scholar
  21. 21.
    Z. Slanina and F. Uhlík, Chem. Phys. Lett., (in press).Google Scholar
  22. 22.
    N. Basco and R. D. Morse, J. Mol. Spectr. 45:34 (1973).Google Scholar
  23. 23.
    J. A. Coxon, W. E. Jones, and E. G. Skolnik, Can. J. Phys. 54:1043 (1976).Google Scholar
  24. 24.
    D. R. Stull (ed.), JANAF Thermochemical Tables (Dow Chemical Company, Midland, 1965).Google Scholar
  25. 25.
    Z. Slanina, Int. J. Thermophys. 8:567 (1987).Google Scholar
  26. 26.
    Z. Slanina, Int. Rev. Phys. Chem. 6:251 (1987).Google Scholar
  27. 27.
    Z. Slanina, J. Phys. Chem. 92:5836 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Z. Slanina
    • 1
  • F. Uhlík
    • 2
  1. 1.Max-Planck-Institut für Chemie (Otto-Hahn-Institut)MainzGermany
  2. 2.Faculty of ScienceCharles UniversityPrague 2Czech and Slovak Federal Republic

Personalised recommendations