Advertisement

International Journal of Thermophysics

, Volume 13, Issue 2, pp 211–221 | Cite as

Determination of the thermal conductivity of xenon-helium mixtures at high temperatures by the shock-tube method

  • K. Hashimoto
  • N. Matsunaga
  • A. Nagashima
  • K. Mito
Article

Abstract

The thermal conductivity of gases at high temperatures has been measured by the shock-tube method, which is uniquely suited to measure thermal conductivities of gases at high temperatures above 2000 K. A consistent set of thermal-conductivity data over a wide range of temperatures has been obtained from optimum combinations of shock-tube experiments at high temperatures, previously published data at lower temperatures, and a theoretical correlation of the temperature dependence. In the present study, the thermal conductivity of xenon-helium mixtures has been determined at compositions of 10 and 30 mol% xenon over the temperature range from 300 to 4800 K. Even though there is a large difference between the thermal conductivity of pure xenon and that of helium, it is interesting that the dependences of the thermal conductivity of the mixture on temperature and composition are linear. The experimental results are in good agreement with the predicted values based on the corresponding-states principle and the mixing rule. From these experimental results, interpolating the corresponding-states correlation data, we represent the equation of xenon-helium gas mixtures for thermal conductivity in terms of temperature and composition.

Key words

corresponding states high temperatures mixing rule shock-tube method thermal conductivity xenon-helium mixtures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Hoshino, K. Mito, A. Nagashima, and M. Miyata, Int. J. Thermophys. 7:647 (1986).Google Scholar
  2. 2.
    K. Mito, D. Hisajima, N. Matsunaga, M. Miyata, and A. Nagashima, JSME Int. J. 30:1601 (1987).Google Scholar
  3. 3.
    J. Mastovsky and F. Slepicka, Warme Stoffübertr. 3:237 (1970).Google Scholar
  4. 4.
    J. Kestin, K. Knierim, E. A. Mason, B. Najafi, S. T. Ro, and M. Waldman, J. Phys. Chem. Ref. Data 13:229 (1984).Google Scholar
  5. 5.
    R. S. Brokaw, Ind. Eng. Chem. 8:240 (1969).Google Scholar
  6. 6.
    J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, New York, 1954).Google Scholar
  7. 7.
    E. A. Mason and H. von Ubisch, Phys. Fluids 3:355 (1960).Google Scholar
  8. 8.
    J. M. Gandhi and S. C. Saxena, Mol. Phys. 12:57 (1967).Google Scholar
  9. 9.
    J. Mastovsky, Inzh.-Fiz. Zh. 33:635 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • K. Hashimoto
    • 1
  • N. Matsunaga
    • 2
  • A. Nagashima
    • 1
  • K. Mito
    • 3
  1. 1.Department of Mechanical EngineeringKeio UniversityYokohamaJapan
  2. 2.Department of Mechanical System EngineeringTakushoku UniversityHachiojiJapan
  3. 3.Department of PhysicsKeio UniversityYokohamaJapan

Personalised recommendations