Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 325, Issue 4, pp 298–305 | Cite as

Estimation of intrasynaptic norepinephrine concentrations at vascular neuroeffector junctions in vivo

  • I. J. Kopin
  • Z. Zukowska-Grojec
  • M. A. Bayorh
  • D. S. Goldstein


We estimated vascular neuroeffector junctional norepinephrine concentrations and their relation to pressor responses by measuring plasma norepinephrine levels and blood pressure during sympathetic stimulation or norepinephrine infusion in pithed, vagotomized, α2-adrenoceptor blocked, adrenal-demedullated rats with and without uptake1 blockade by desipramine. For an increment in mean arterial pressure of 50 mm Hg, the estimated mean junctional norepinephrine concentration (ES50m) was about 7 nmol/l. Norepinephrine concentration gradients between the site of norepinephrine release and plasma appeared to be equal and reciprocal for sympathetic stimulation and for norepinephrine infusion. These gradients were reduced equally (by about two-thirds) after desipramine treatment, indicating that removal of both released and infused norepinephrine is mainly by neuronal uptake.

Key words

Norepinephrine Synapse Neuroeffector junction Sympathetic nervous system Blood pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bevan JA, Su C (1973) Sympathetic mechanisms in blood vessels: Nerve and muscle relationships. Ann Rev Pharmacol 13:269–286Google Scholar
  2. Bevan JA, Su C (1974) Variations of intra and perisynaptic adrenergic transmitter concentration with width of synaptic cleft in vascular tissue. J Pharmacol Exp Ther 190:30–38Google Scholar
  3. Blakeley AGH, Brown L, Geffen L (1969) Uptake and re-use of the sympathetic transmitter in the cats spleen. Proc R Soc Lond B 174:51–68Google Scholar
  4. Bonaccorsi A, Jespersen J, Garattini S (1970) The influence of desipramine on the sensitivity and accumulation of noradrenaline in the isolated tail artery of the rat. Eur J Pharmacol 9: 124–127Google Scholar
  5. Da Prada M, Zürcher G (1976) Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline and dopamine within the femtomole range. Life Sci 19:1161–1174Google Scholar
  6. De la Lande IS, Frewin D, Waterson JG (1967) The influence of synaptic innervation on vascular sensitivity to noradrenaline. Br J Pharmacol 31:82–93Google Scholar
  7. De la Lande IS, Waterson JG (1967) Site of action of cocaine in the perfused artery. Nature 214:313–314Google Scholar
  8. Folkow B, Häggendahl J, Lisander B (1967) Extent of release and elimination of noradrenaline at peripheral adrenergic terminals. Acta Physiol Scand [Suppl] 307:1–38Google Scholar
  9. Furchgott RF (1972) The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. In: Blaschko H, Muscholl E (eds) Catecholamines. Handbook of experimental pharmacology, vol 33. Springer, Berlin Heidelberg New York, pp 238–335Google Scholar
  10. Gillespie JS, Muir TC (1967a) A method of stimulating the complete sympathetic outflow from the spinal cord to blood vessels in the pithed rat. Br J Pharmacol 30:78–87Google Scholar
  11. Gillespie JS, Muir TC (1967b) The origin of the decline in the vasopressor response to infused noradrenaline in the pithed rat. Br J Pharmacol 30:88–98Google Scholar
  12. Holtzbauer M, Sharman DF (1972) The distribution of catecholamines in vertebrate. In: Blaschko H, Muscholl E (eds) Catecholamines. Handbook of experimental pharmacology, vol. 33, Springer, Berlin Heidelberg New York, pp 110–185Google Scholar
  13. Iversen LL (1963) The uptake of noradrenaline by the isolated perfused rat heart. Br J Pharmacol 21:523–537Google Scholar
  14. Langer SZ, Massingham R, Shepperson N (1980) Presence of postsynaptic α2 adrenoceptors of predominantly extrasynaptic location in the vascular smooth muscle of the dog hind limb. Clin Sci 59:225s-228sGoogle Scholar
  15. McGrath JC (1982) Evidence for more than one type of postjunctional α-adrenoceptor. Biochem Pharmacol 31:467–484Google Scholar
  16. Snedecor GW, Cochran WG (1967) Statistical methods, 6th edn. Iowa State University Press, Ames, IowaGoogle Scholar
  17. Stjärne L (1975) Basic mechanisms and local feedback control of secretion of adrenergic and cholineric neurotransmitters. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology, vol 6. Plenum Press, New York, pp 179–233Google Scholar
  18. Trendelenburg U (1971) The importance of the uptake mechanism of adrenergic nerves. In: Bevan JA, Furchgott RF, Maxwell RA, Somezo AP (eds) Physiology and pharmacology of vascular neuroeffector systems. Karger. Basel, pp 119–127Google Scholar
  19. Verity RA (1971) Morphologic studies of the vascular neuroeffector apparatus. In: Bevan JA, Furchgott RF, Maxwell RA, Somezo AP (eds) Physiology and pharmacology of vascular neuroeffector systems. Karger, Basel, pp 2–12Google Scholar
  20. Weise VK, Kopin IJ (1976) Assay of catecholamines in human plasma: Studies of a single isotope radioenzymatic procedure. Life Sci 19:1673–1686Google Scholar
  21. Yamaguchi I, Kopin IJ (1979) Plasma catecholamines and blood pressure responses to sympathetic stimulation in pithed rats. Am J Physiol 237(3):H305-H310Google Scholar
  22. Yamaguchi I, Kopin IJ (1980) Differential inhibition of α-1 and α-2 adrenoceptor-mediated pressor responses in pithed rats. J Pharmacol Exp Ther 214:275–281Google Scholar
  23. Zukowska-Grojec Z, Bayorh MA, Kopin IJ (1983) Effect of desipramine on the effects of α-adrenoceptor inhibitors on pressor responses and release of norepinephrine into plasma of pithed rats. J Cardiovasc Pharmacol 5:297–301Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • I. J. Kopin
    • 1
  • Z. Zukowska-Grojec
    • 2
  • M. A. Bayorh
    • 2
  • D. S. Goldstein
    • 3
  1. 1.Intramural Research ProgramNINCDSBethesdaUSA
  2. 2.Laboratory of Clinical ScienceNIMHBethesdaUSA
  3. 3.Hypertension-Endocrine BranchNHLBIBethesdaUSA

Personalised recommendations