Biochemical Genetics

, Volume 17, Issue 9–10, pp 881–895 | Cite as

Relationship of the oxidative pentose shunt pathway to lipid synthesis in Drosophila melanogaster

  • B. W. Geer
  • D. L. Lindel
  • D. M. Lindel


The tissue activities of the oxidative pentose shunt enzymes, glucose-6-phosphate dehydrogenase (E.C. and 6-phosphogluconate dehydrogenase (E.C., in the larvae of Drosophila melanogaster are not dependent on the amount of flux through the oxidative pentose shunt pathway. An oxidative pentose shunt deficiency effects about a 40% reduction in the NADPH concentration in early third instar larvae, resulting in a six-fold difference in the NADPH/NADP+ ratio between wild-type and pentose-shunt-deficient larvae. The capacity of pentose-shunt-deficient larvae to synthesize triglyceride in response to a high concentration of dietary sucrose is only 73% of the wild-type level. Environmental temperature influences on the fatty acid composition of larvae are not altered by an oxidative pentose shunt deficiency.

Key words

glucose-6-phosphate dehydrogenase 6-phosphogluconate dehydrogenase pentose shunt lipid synthesis enzyme regulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bijlsma, R. (1978). Polymorphism at the G6PD and 6PGD loci in Drosophila melanogaster. II. Evidence for interaction in fitness. Genet. Res. 31227.Google Scholar
  2. Bijlsma, R., and Van Delden, W. (1977). Polymorphism at the G6PD and 6PGD loci in Drosophila melanogaster. I. Evidence for selection in experimental population. Genet. Res. 30221.Google Scholar
  3. Bodenstein, D. (1950). The postembryonic development of Drosophila. In Demerec, M. (ed.), Biology of Drosophila Hafner, New York, pp. 275–367.Google Scholar
  4. Bowman, J. T., and Simmons, J. R. (1973). Gene modulation in Drosophila: dosage compensation of Pgd + and Zw + genes. Biochem. Genet. 10319.Google Scholar
  5. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72248.Google Scholar
  6. Flatt, J. P., and Ball, E. G. (1964). Studies on the metabolism of adipose tissue. XV. An evaluation of the major pathways of glucose catabolism as influenced by insulin and epinephrine. J. Biol. Chem. 239675.Google Scholar
  7. Folch, J., Lees, M., and Sloane Stanley, G. H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226497.Google Scholar
  8. Fox, D. J. (1971). Soluble citric acid cycle enzymes of Drosophila melanogaster. I. Genetics and ontogeny of NADP-linked isocitrate dehydrogenase. Biochem. Genet. 569.Google Scholar
  9. Geer, B. W., and Downing, B. C. (1972). Changes in lipid and protein syntheses during spermatozoan development and thoracic tissue maturation in Drosophila hydei. Wilhelm Roux' Arch. 17083.Google Scholar
  10. Geer, B. W., and Perille, T. J. (1977). Effects of dietary sucrose and environmental temperature on fatty acid synthesis in Drosophila melanogaster. Insect Biochem. 7371.Google Scholar
  11. Geer, B. W., Kamiak, S. N., Kidd, K. R., Nishimura, R. A., and Yemm, S. J. (1976). Regulation of the oxidative NADP-enzyme tissue levels in Drosophila melanogaster. I. Modulation by dietary carbohydrate and lipid. J. Exp. Zool. 19515.Google Scholar
  12. Geer, B. W., Woodward, C. G., and Marshall, S. D. (1978). Regulation of the oxidative NADP-enzyme tissue levels in Drosophila melanogaster. II. The biochemical basis of dietary carbohydrate and d-glycerate modulation. J. Exp. Zool. 203391.Google Scholar
  13. Geer, B. W., Krochko, D., and Williamson, J. H. (1979). Ontogeny, cell distribution, and the physiological role of NADP-malic enzyme in Drosophila melanogaster. Biochem. Genet. 17867.Google Scholar
  14. Giesel, J. T. (1976). Biology of a duplicate gene system with glucose 6-phosphate dehydrogenase activity in Drosophila melanogaster: genetic analysis and differences in fitness components and reaction to environmental parameters among Z w genotypes. Biochem. Genet. 14823.Google Scholar
  15. Glock, G. E., and McLean, P. (1953). Further studies on the properties and assay of glucose-6-phosphate dehydrogenase of rat liver. Biochem. J. 55400.Google Scholar
  16. Goebell, H., and Klingenberg, M. (1964). DPN-spezifische Isocitrate-dehydrogenase der Mitochondrien. I. Kinefische Eigenschaften, Vorkommen und Funktion der DPN-spzifischen Isocitrate-dehydrogenase. Biochem. Z. 340441.Google Scholar
  17. Gvozdev, V. A., Birstein, V. J., and Faizullin, L. Z. (1970). Gene dependent regulation of 6-phosphogluconate dehydrogenase activity of Drosophila melanogaster. Drosophila Inform. Serv. 45163.Google Scholar
  18. Gvozdev, V. A., Gostimsky, S. A., Gerasimova, T. I., and Gavrina, E. M. (1973). Complementation and fine structure analysis at the 2D3–2F5 region of the X-chromosome of Drosophila melanogaster. Drosophila Inform. Serv. 5034.Google Scholar
  19. Gvozdev, V. A., Gerasimova, T. I., Kogan, G. L., and Braslavskaya, O. Y. (1976). Role of the pentose phosphate pathway in metabolism of Drosophila melanogaster elucidated by mutations affecting glucose-6-phosphate and 6-phosphogluconate dehydrogenases. FEBS Lett. 6485.Google Scholar
  20. Gvozdev, V. A., Gerasimova, T. I., Kogan, G. L., and Rosovsky, J. M. (1977). Investigation on the organisation of genetic loci in Drosophila melanogaster: Lethal mutations affecting 6-phosphogluconate dehydrogenase and their suppression. Mol. Gen. Genet. 153191.Google Scholar
  21. Holten, D., Procsal, D., and Chang, H. (1976). Regulation of pentose phosphate pathway dehydrogenases by NADP+/NADPH ratios. Biochem. Biophys. Res. Commun. 68436.Google Scholar
  22. Horie, Y. (1967). Dehydrogenase in carbohydrate metabolism in larvae of the silkworm, Bombyx mori L. J. Insect Physiol. 131163.Google Scholar
  23. Hughes, M. B., and Lucchesi, J. C. (1977). Genetic rescue of a lethal “null” activity allele of 6-phosphogluconate dehydrogenase in Drosophila melanogaster. Science 1971114.Google Scholar
  24. Hughes, M. B., and Lucchesi, J. C. (1978). Dietary rescue of a lethal “null” activity allele of 6-phosphogluconate dehydrogenase in Drosophila melanogaster. Biochem. Genet. (in press).Google Scholar
  25. Keith, A. D. (1967). Fatty acid metabolism in Drosophila melanogaster: interaction between dietary fatty acids and de novo synthesis. Comp. Biochem. Physiol. 21587.Google Scholar
  26. Lewis, E. B. (1960). A new standard food medium. Drosophila Inform. Serv. 34117.Google Scholar
  27. Lefevre, G. (1971). New mutants. Drosophila Inform. Serv. 4640.Google Scholar
  28. Lindsley, D. L., and Grell, E. H. (1968). Genetic Variations of Drosophila melanogaster, Carnegie Institution of Washington Publication No. 627.Google Scholar
  29. Lowry, O. H., and Passoneau, J. V. (1972). A Flexible System of Enzymatic Analysis Academic Press, New York, 291 pp.Google Scholar
  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.Google Scholar
  31. Metcalfe, L. D., Schmitz, A. A., and Pelka, J. R. (1966). Rapid preparation of fatty acid esters for gas chromatographic analysis. Anal. Chem. 38514.Google Scholar
  32. Nisselbaum, J. S., and Green, S. (1969). Ultramicro determination of pyridine nucleotides in tissues. Anal. Biochem. 27212.Google Scholar
  33. O'Brien, S. J., and MacIntyre, R. J. (1971). A biochemical genetic map of Drosophila melanogaster. Drosophila Inform. Serv. 4689.Google Scholar
  34. Ochoa, S. (1955). Malic enzyme. In Colowick, S. P., and Kaplan, N. O. (eds.), Methods in Enzymology, Vol. 1, Academic Press, New York, pp. 739–753.Google Scholar
  35. Parr, C. W. (1956). Inhibition of phosphoglucose isomerase. Nature 1781401.Google Scholar
  36. Pieragostini, E., Vanelli, M. L., Sangiorgi, S., and Palenzona, D. (1978). Glucose-6-phosphate dehydrogenase in Drosophila melanogaster: autosomal determination and relationship to vg marker. Drosophila Inform. Serv. 53180.Google Scholar
  37. Seecof, R. L., Kaplan, W. D., and Futch, D. G. (1969). Dosage compensation for enzyme activities in Drosophila melanogaster. Proc. Natl. Acad. Sci. 62528.Google Scholar
  38. Stewart, B. R., and Merriam, J. R. (1974). Segmental aneuploidy and enzyme activity as a method for cytogenic localization in Drosophila melanogaster. Genetics 76301.Google Scholar
  39. Sturtevant, A. H., and Beadle, G. W. (1936). The relations of inversions in the X chromosome of Drosophila melanogaster to crossing-over and disjunction. Genetics 21554.Google Scholar
  40. Voelker, R. A., Langley, C. H., Leigh-Brown, A. J., and Ohnishi, S. (1978). New data on allozyme loci in Drosophila melanogaster. Drosophila Inform. Serv. 53200.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • B. W. Geer
    • 1
  • D. L. Lindel
    • 1
  • D. M. Lindel
    • 1
  1. 1.Department of BiologyKnox CollegeGalesburg

Personalised recommendations