Biochemical Genetics

, Volume 17, Issue 9–10, pp 807–824 | Cite as

Comparison of the properties of the alcohol dehydrogenases from wild-type and mutant Chinese hamster somatic cells

  • B. G. Talbot
  • J. P. Thirion
Article

Abstract

Alcohol dehydrogenases (alcohol: NAD oxidoreductase, E.C. 1.1.1.1.) from allyl alcohol-resistant and wild-type Chinese hamster cells were purified using gel filtration, ion-exchange, and affinity-column chromatography. Both enzymes exhibited the same isozyme band patterns on electrophoresis and isoelectric focusing. Physicochemical properties of the two enzymes such as pH and temperature optima, Km values, and temperature stability were found to be the same within the experimental errors. The genetic significance of these findings is discussed.

Key words

Chinese hamster alcohol dehydrogenase allyl alcohol somatic cell mutant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awdeh, Z. L., Williamson, A. R., and Askonas, B. A. (1970). One cell-one immunoglobulin, origin of limited heterogeneity of myeloma proteins. Biochem. J. 116241.Google Scholar
  2. Branden, C. I., Jornvall, H., Eklund, H., and Furugren, B. O. (1975). Alcohol dehydrogenases. In Boyer, P. D. (ed.), The Enzymes, Vol. XI, Part, A, 3rd ed., Academic Press, New York, pp. 103–190.Google Scholar
  3. Ciriacy, M. (1975a). Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. I. Isolation and genetic analysis of adh mutants. Mutation Res. 29315.Google Scholar
  4. Ciriacy, M. (1975b). Genetics of alcohol dehydrogenase in Saccharomyces cerevisiae. II. Two loci controlling systhesis of the glucose-repressible ADH-II. Mol. Gen. Genet. 138157.Google Scholar
  5. Ciriacy, M. (1976) Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADH-II) in Saccharomyces cerevisiae. Mol. Gen. Genet. 145327.Google Scholar
  6. Davis, B. J. (1964) Disc electrophoresis. II. Methods and applications to human serum protein. Ann. N.Y. Acad. Sci. 121404.Google Scholar
  7. Demerec, M., Adelberg, E. A., Clark, A. J., and Harkman, P. E. (1966). A proposal for a uniform nomenclature in bacterial genetics. Genetics 5461.Google Scholar
  8. Dowd, J. E., and Riggs, D. S. (1965). A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations. J. Biol. Chem. 240863.Google Scholar
  9. Efron, V. (1970). Alcohol dehydrogenase in maize: Genetic control of enzyme activity. Science 170751.Google Scholar
  10. Gibson, D. (1976). Genetic polymorphism of mouse immunoglobulin light chains revealed by isoelectric focusing. J. Exp. Med. 144298.Google Scholar
  11. Johnson, G. G., Eisenberg, L. R., and Migeon, B. R. (1979). Human and mouse hypoxanthineguanine phosphoribosyltransferase: Dimers and tetramers. Science 203174.Google Scholar
  12. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227680.Google Scholar
  13. Li, T.-K. (1977). Enzymes of human alcohol metabolism. Adv. Enzymol. 45427.Google Scholar
  14. Megnet, R. (1967). Mutants partially deficient in alcohol dehydrogenase in Schizosaccharomyces pombe. Arch. Biochem. Biophys. 121194.Google Scholar
  15. O'Donnell, J., Gerace, L., Leister, F., and Sofer, W. (1975). Chemical selection of mutants that affect alcohol dehydrogenase in Drosophila. II. Use of 1-pentyne-3-ol. Genetics 7973Google Scholar
  16. O'Donnell, J., Mandel, H. C., Krauss, M., and Sofer, W. (1977). Genetic and cytogenetic analysis of the Adh region in Drosophila melanogaster. Genetics 86553.Google Scholar
  17. Ohlsson, R., Brodelius, P., and Mosebach, K. (1972). Affinity chromatography of enzymes on an AMP-analogue: Specific elution of dehydrogenases from a general ligand. F.E.B.S. Letters 25234.Google Scholar
  18. Schwartz, D. (1976). Regulation of expression of Adh genes in maize. Proc. Natl. Acad. Sci. 73582.Google Scholar
  19. Schwartz, D., and Osterman, J. (1976). A pollen selection system for alcohol dehydrogenase negative mutants in plants. Genetics 8363.Google Scholar
  20. Smyth, C. J., and Wadstrom, T. (1975). Isoelectric focusing in thin layer polyacrylamide gel combined with a zymogram method for detecting enzyme microheterogeneity: Sample application. Anal. Biochem. 65137.Google Scholar
  21. Sofer, W. H., and Hatkoff, M. A. (1972). Chemical selection of alcohol dehydrogenase negative mutants in Drosophila. Genetics 72545.Google Scholar
  22. Thirion, J.-P., and Talbot, B. G. (1978). Alcohol dehydrogenase mutants of Chinese hamster somatic cells resistant to allyl alcohol. Genetics 88343.Google Scholar
  23. Thompson, J. N., Jr., Ashburner, M., and Woodruff, R. C. (1977). Presumptive control mutation for alcohol dehydrogenase in Drosophila melanogaster. Nature 270363.Google Scholar
  24. Thorig, G. E. W., Schoone, A. A., and Scharloo, W. (1975). Variation between electrophoretically identical alleles at the alcohol dehydrogenase locus in Drosophila melanogaster. Biochem. Genet. 13721.Google Scholar
  25. Williamson, A. R., Salaman, M. R., and Kreth, W. H. (1973). Microheterogeneity and allomorphism of proteins. Ann. N. Y. Acad. Sci. 209210.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • B. G. Talbot
    • 1
  • J. P. Thirion
    • 1
  1. 1.Departement de Microbiologie, Centre Hospitalier Universitaire, Faculté de MédicineUniversité de SherbrookeSherbrookeCanada

Personalised recommendations