Biochemical Genetics

, Volume 23, Issue 7–8, pp 599–606 | Cite as

Assignment of Lap-1 to linkage group I of the rat (Rattus norvegicus)

  • L. F. M. van Zutphen
  • M. den Bieman
  • H. J. Hedrich
  • R. Kluge


Genetic analysis of backcross progeny from previously characterized rat inbred strains revealed that the biochemical marker Lap-1 is localized in linkage group I (LG I). Lap-1 codes for leucine arylaminopeptidase (EC 3.4.11). The distances of Lap-1 to c, RT6, and Hbb, based on recombination frequencies, are 3.1±1.5, 8.3±4.0, and 11.4±2.8 cM, respectively. Acon-1 codes for aconitase (EC The calculated distances of Acon-1 to c and Hbb are 30.1±5.0 and 36.1±5.3 cM, respectively. This suggests that Acon-1 is also in LG I, but the observed high frequency of double crossovers requires further confirmation of this linkage. Ahd-2, Es-6, and Gdc-1 are linked neither to markers of LG I nor to one another.

Key words

rat leucine arylaminopeptidase linkage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M., Baverstock, P. R., Watts, C. H. S., and Gutman, G. A. (1984). Enzyme markers in inbred rat strains: Genetics of new markers and strain profiles. Biochem. Genet. 22611.Google Scholar
  2. Bender, K., and Günther, E. (1978). Screening of inbred rat strains for electrophoretic protein polymorphisms. Biochem. Genet. 16387.Google Scholar
  3. Bender, K., Nagel, M., Müller, C. R., and Günther, E. (1979). Electrophoretic protein variation in inbred strains of Rattus norvegicus: Strain distribution, description of a new esterase polymorphism and linkage studies. Transplant. Proc. 111653.Google Scholar
  4. Bender, K., Adams, M., Baverstock, P. R., den Bieman, M., Bissbort, S., Brdicka, R., Butcher, G. W., Cramer, D. V., Von Deimling, O., Festing, M. F. W., Günther, E., Guttmann, R. D., Hedrich, H. J., Kendall, P. B., Kluge, R., Moutier, R., Simon, B., Womack, J. E., Yamada, J., and van Zutphen, B. (1984). Biochemical markers in inbred strains of the rat (Rattus norvegicus). Immunogenetics 19257.Google Scholar
  5. Brdicka, R. (1966). Evidence for linkage between haemoglobin and chromogen loci. Folia Biol. 12305.Google Scholar
  6. Butcher, G. W., Clarke, S., and Tucker, E. M. (1979). Close linkage of peripheral T-lymphocyte antigen A (Pta A) to the hemoglobin variant Hbb on linkage group I of the rat. Transplant. Proc. 111629.Google Scholar
  7. Castle, W. E. (1944). Linkage of walzing in the rat. Proc. Natl. Acad. Sci. 30226.Google Scholar
  8. Castle, W. E. (1947). The domestication of the rat. Proc. Natl. Acad. Sci. 33109.Google Scholar
  9. Castle, W. E., and Wright, S. (1915). Two color mutations of rats (pink-eyed yellow and red-eyed yellow), which show partial coupling (linkage). Science 42192.Google Scholar
  10. DeWitt, C. W., and McCullough, M. (1975). Ag-F: Serological and genetic identification of a new locus in the rat governing lymphocyte membrane antigens. Transplantation 19310.Google Scholar
  11. Eriksson, K., Halkka, O., Lokki, J., and Saura, A. (1976). Enzyme polymorphism in feral, outbred and inbred rats (Rattus norvegicus). Heredity 37341.Google Scholar
  12. French, E. A., and Roberts, K. B. (1965). The multiple haemoglobins of the rat. J Physiol. 180:16P.Google Scholar
  13. French, E. A., Roberts, K. B., and Searle, A. G. (1971). Linkage between a hemoglobin locus and albinism in the norway rat. Biochem. Genet. 5397Google Scholar
  14. Greaves, J. H., and Ayres, P. (1969). Linkage between genes for coat colour and resistance to warfarin in Rattus norvegicus. Nature 224284.Google Scholar
  15. Grüneberg, H. (1939). The linkage relations of a new lethal gene in the rat (Rattus norvegicus). Genetics 24732.Google Scholar
  16. Knox, W. E., and Lister-Rosenoer, L. M. (1978). Infantile ichthyosis in rats: A new model of hyperkeratotic skin disease. J. Hered. 69391.Google Scholar
  17. Krsiakova, M., Krem, V., Ottova, B., and Bila, V. (1978). Immunogenetic study of a histocompatibility system in linkage with albino locus from LGI of the Norway rat. Folia Biol. 24378.Google Scholar
  18. Lewis, W. H. P., and Harris, H. (1967). Human red cell peptidases. Nature 215351.Google Scholar
  19. Lewis, W. H. P., and Truslove, G. M. (1969). Electrophoretic heterogeneity of mouse erythrocyte peptidase. Biochem. Genet. 3493.Google Scholar
  20. Palm, J., and Ferguson, F. C. (1976). Fuzzy, a hypothrichotic mutant in linkage group I of the Norway rat. J. Hered. 67284.Google Scholar
  21. Shaw, C. R., and Prasad, R. (1970). Starch gel electrophoresis—a compiltion of recipies. Biochem. Genet. 4297.Google Scholar
  22. Stolc, V., and Gill, T. J. (1983). Linkage and polymorphisms of a gene controlling lactate dehydrogenase in the rat. Biochem. Genet. 21933.Google Scholar
  23. van Zutphen, L. F. M., Lagerwerf, A., Bouw, J., and den Bieman, M. G. C. W. (1981). Biochemical polymorphism in the rat: Genetics of three electrophoretic variants and characterization of inbred strains. Biochem. Genet. 19173.Google Scholar
  24. von Deimling, O., Otto, O., and Günther, E. (1982). Research note. Rat News Letter 943.Google Scholar
  25. Womack, J. E., and Cramer, D. V. (1980). Peptidase-3 (Pep-3), a dipeptidase variant in rat homologous to mouse Pep-3 (Dip-1) and human PEP-C. Biochem. Genet. 181019.Google Scholar
  26. Womack, J. E., Lynes, M. A., and Taylor, B. A. (1975). Genetic variation of an intestinal leucine arylaminopeptidase (Lap-1) in the mouse and its location on chromosome 9. Biochem. Genet. 13511.Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • L. F. M. van Zutphen
    • 1
  • M. den Bieman
    • 1
  • H. J. Hedrich
    • 2
  • R. Kluge
    • 2
  1. 1.Department of Laboratory Animal Science, Veterinary FacultyUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Central Institute for Laboratory Animal BreedingHannoverGermany

Personalised recommendations