Biochemical Genetics

, Volume 19, Issue 3–4, pp 263–276 | Cite as

Nitrate reductase activity (in vivo and in vitro) of ditelosomic stocks of wheat (Triticum aestivum L.)

  • P. W. Jones
  • W. J. Whittington
  • C. B. Johnson


The nitrate reductase activities (NRA) of 31 ditelosomic stocks were compared with that of the control plant [Chinese Spring (CS) euploid], using in vivo and in vitro assay procedures that had been optimized with respect to the euploid. Fourteen stocks exhibited significant differences in in vivo NRA from that of the euploid; the effect of removal of a chromosome arm was always to increase NRA. Eight of these stocks showed similar effects in vitro, although in three, a casein-sensitive factor had to be eliminated before the difference was expressed. Homoeologous group effects were evident among ditelosomics of groups 2, 4, and 7, while for three chromosomes (2D, 7A, and 7B), removal of either arm resulted in a similar increase in NRA in vivo and probably in vitro.

Key words

nitrate reductase Triticum aestivum ditelosomics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arst, H. N., MacDonald, D. W., and Cove, D. J. (1970). Molybdate metabolism in Aspergillus nidulans. I. Mutations affecting nitrate reductase and xanthine dehydrogenase. Mol. Gen. Genet. 108129.Google Scholar
  2. Beevers, L., and Hageman, R. H. (1969). Nitrate reduction in higher plants. Ann. Rev. Plant Physiol. 20495.Google Scholar
  3. Beevers, L., Schrader, L. E., Flesher, D., and Hageman, R. H. (1965). The role of light and nitrate in the induction of nitrate reductase in radish cotyledons and maize seedlings. Pl. Physiol., Lancaster 46691.Google Scholar
  4. Bilal, I. M., and Rains, D. W. (1973). In vivo characterization of nitrate reductase activity in cotton. Physiologia Pl. 28237.Google Scholar
  5. Brunetti, N., and Hageman, R. H. (1976). Comparison of in vivo and in vitro assays of nitrate reductase in wheat (T. aestivum L.) seedlings. Pl. Physiol., Lancaster 58583.Google Scholar
  6. Burton, K. (1956). A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62315.Google Scholar
  7. Deckard, E. L., Williams, N. D., and Hammond, J. J. (1975). Nitrate reductase activity of wheat aneuploids. Agron. Abstr., p. 106.Google Scholar
  8. Edwards, I. B. (1973). Physiologic and genetic studies of nitrate reductase activity and nitrogen distribution in spring wheat (Triticum aestivum L.) Doctoral thesis, University of Illinois.Google Scholar
  9. Erickson, R. O. (1960). Nomogram for the Plastochron Index. Am. J. Bot. 47350.Google Scholar
  10. Erickson, R. O., and Michelini, F. J. (1957). The Plastochron Index. Am. J. Bot. 44297.Google Scholar
  11. Hart, G. E. (1973). Homoeologous gene evolution in hexaploid wheat. Proc. 4th Int. Wheat Genet. Symp., pp. 80–810.Google Scholar
  12. Jones, P. W. (1979). Genetic analysis of the control of nitrate reductase in wheat. Doctoral thesis, University of Nottingham.Google Scholar
  13. Konzak, C. F. (1977). Genetic control of the content, amino acid composition and processing properties of proteins in wheat. Adv. Genet. 19408.Google Scholar
  14. Lowry, O. H., Roseborough, N. J., Farr, A. L., and Randall, R. H. (1951). Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 193265.Google Scholar
  15. MacDonald, D. W., Cove, D. J., and Coddington, A. (1974). Cytochrome c reductases from wild-type and mutant strains of Aspergillus nidulans. Mol. Gen. Genet. 128187.Google Scholar
  16. McIntosh, R. A. (1973). A catalogue of gene symbols for wheat. Proc. 4th Int. Wheat Genet. Symp., pp. 893–937.Google Scholar
  17. Oostindier-Braaksma, F. J., and Feenstra, W. J. (1973). Isolation and characterization of chlorate-resistant mutants of Arabidopsis thaliana. Mutat. Res. 19175.Google Scholar
  18. Schrader, L. E., Ritenour, G. L., Eilrich, G. L., and Hageman, R. H. (1968). Some characteristics of nitrate reductase from higher plants. Pl. Physiol., Lancaster 43930.Google Scholar
  19. Sears, E. R. (1966). Nullisomic-tetrasomic combinations in hexaploid wheat. In Riley R., and Lewis, K. (eds.), Chromosome Manipulations and Plant Genetics Oliver & Boyd, Edinburgh.Google Scholar
  20. Sherrard, J. H., Green, D. L., Swinden, L. B., and Dalling, M. J. (1976). Identification of wheat (T. aestivum L.) chromosomes with genes controlling the level of nitrate reductase, nitrate reductase and acid proteinase using the CS-Hope substitution lines. Biochem. Genet. 14905.Google Scholar
  21. Sorger, G. J. (1965). Simultaneous induction and repression of nitrate reductase and TPNH-cytochrome c reductase in Neurospora crassa. Biochim. Biophys. Acta 99234.Google Scholar
  22. Sorger, G. J. (1966). Nitrate reductase transport systems in mutant and wild-type strains of Neurospora. Biochim. Biophys. Acta 118484.Google Scholar
  23. Steer, B. T. (1974). Control of diurnal variations in photosynthetic products. II. Nitrate reductase activity. Pl. Physiol., Lancaster 54762.Google Scholar
  24. Upcroft, J. A. (1973). Nitrate reduction in seedlings of Triticum aestivum. Doctoral thesis, University of Sydney.Google Scholar
  25. Upcroft, J. A., and Done, J. (1976). Circadian rhythm of nitrate reductase [NADH] activity in wheat seedlings grown in continuous light. Aust. J. Plant Physiol. 3421.Google Scholar
  26. Warner, R. L. (1968). Inheritance of nitrate reductase activity in characterization of nitrate reductase in Zea mays L. Doctoral thesis, University of Illinois.Google Scholar
  27. Warner, R. L., Lin, C. J., and Kleinkopf, A. (1977). Nitrate reductase-deficient mutants in barley. Nature 269406.Google Scholar
  28. Wolf, G., Rimpau, J., and Lelley, T. (1977). Localization of structural and regulatory genes for phosphodiesterase in wheat (Triticum aestivum). Genetics 86597.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • P. W. Jones
    • 1
  • W. J. Whittington
    • 2
  • C. B. Johnson
    • 3
  1. 1.Department of BiochemistryUniversity of LiverpoolLiverpoolU.K.
  2. 2.Department of Physiology and Environmental StudiesUniversity of Nottingham, School of AgricultureSutton BoningtonU.K.
  3. 3.Department of BotanyUniversity of ReadingReadingU.K.

Personalised recommendations