Skip to main content
Log in

Analysis of multiwavelength pyrometry using nonlinear chi-square fits and Monte Carlo methods

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An analysis of multiwavelength pyrometry is made using Monte Carlo methods to evaluate the measurement error as a function of temperature for three, four, five, and six channels. Both a graybody and an emissivity with linear wavelength dependence are considered. χ 2 is calculated using the observed intensity in each channel and is minimized with respect to the temperature and the emissivity coefficients, using the Levenberg-Marquardt method. The influence of spectral span of the channels and the weight function used in the χ 2 fit are exmained. For the case of linear wavelength dependence, the solutions are found to be nonunique, even with six channels. The results show little improvement of precision with increasing number of channels beyond four channels when the nonlinear variable T is free. Both the spectral span and the weight function are shown to be important variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Lyzenga and T. J. Ahrens, Rev. Sci. Instrum. 50:1421 (1979).

    Google Scholar 

  2. J. L. Gardner, High Temp. High Press. 12:699 (1980).

    Google Scholar 

  3. J. L. Gardner and T. P. Jones, J. Phys. E Sci. Instrum. 13:306 (1980).

    Google Scholar 

  4. J. L. Gardner, T. P. Jones, and M. R. Davies, High Temp. High Press. 13:459 (1981).

    Google Scholar 

  5. G. A. Lyzenga and T. J. Ahrens, Rev. Sci. Instrum. 76:6282 (1982).

    Google Scholar 

  6. G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, and A. C. Mitchell, J. Chem. Phys. 76:6282 (1982).

    Google Scholar 

  7. J.-P. Hiernaut, R. Beukers, W. Heinz, R. Selfslag, M. Hoch, and R. W. Ohse, High Temp. High Press. 18:617 (1986).

    Google Scholar 

  8. V. N. Snopko, High Temp. (USSR) 25:724 (1987).

    Google Scholar 

  9. H. B. Radousky, in Shock Waves in Condensed Matter, 1987, S. C. Schmidt and N. C. Holmes, eds. (Elsevier, New York, 1988), pp. 89–94.

    Google Scholar 

  10. P. B. Coates, High Temp. High Press. 20:433 (1988).

    Google Scholar 

  11. J.-P. Hiernaut, F. Sakuma, and C. Ronchi, High Temp. High Press. 21:139 (1989).

    Google Scholar 

  12. J.-F. Babelot and M. Hoch, High Temp. High Press. 21:79 (1989).

    Google Scholar 

  13. M. B. Boslough and T. J. Ahrens, Rev. Sci. Instrum. 60:3711 (1989).

    Google Scholar 

  14. H. B. Radousky and A. C. Mitchell, Rev. Sci. Instrum. 60:3707 (1989).

    Google Scholar 

  15. N. C. Holmes, Private communication.

  16. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Fortran version) (Cambridge University Press, 1989), pp. 523–528.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gathers, G.R. Analysis of multiwavelength pyrometry using nonlinear chi-square fits and Monte Carlo methods. Int J Thermophys 13, 539–554 (1992). https://doi.org/10.1007/BF00503888

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503888

Key words

Navigation