International Journal of Thermophysics

, Volume 13, Issue 3, pp 489–498 | Cite as

Self-diffusion at the melting point: From H2 and N2 to liquid metals

  • B. H. Armstrong


A nominal lower bound to the mean free diffusion time at the melting point Tm was obtained earlier which provided a factor-two type estimate for self-diffusion coefficients of the alkali halides, alkali metals, eight other metals, and Ar. The argument was based on the classical Uncertainty Principle applied to the solid crystal, whereby maximum-frequency phonons lose validity as collective excitations and degenerate into aperiodic, single-particle diffusive motion at the melting point. Because of the short time scale of this motion, the perfect-gas diffusion equation and true mass can be used to obtain the self-diffusion coefficient in the Debye approximation to the phonon spectrum. This result for the self-diffusion coefficient also yields the scale factor that determines the order of magnitude of liquid self-diffusion coefficients, which has long been an open question. The earlier theory is summarized and clarified, and the results extended to the more complex molecular liquids H2 and N2. It is also demonstrated that combining Lindemann's melting law with the perfect-gas diffusion equation estimate yields a well-known empirical expression for liquid-metal self-diffusion at Tm. Validity of the self-diffusion estimate over a melting temperature range from 14 to more than 1300 K and over a wide variety of crystals provides strong confirmation for the existence of the specialized diffusive motion at the melting point, as well as confirmation of a relation between the phonon spectrum of the solid crystal and diffusive motion in the melt.

Key words

melting melting point phonons self-diffusion uncertainty principle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. H. Armstrong, in Phonon Scattering in Condensed Matter V, A. C. Anderson and J. P. Wolfe, eds. (Springer-Verlag, Berlin, 1986), pp. 341–343.Google Scholar
  2. 2.
    B. H. Armstrong, Int. J. Thermophys. 9:825–838 (1988).Google Scholar
  3. 3.
    B. H. Armstrong, The Electron-Phonon Interaction and Melting of Metals, Presented at 11th Symposium on Thermophysical Properties, Boulder, CO, June 23–27, 1991. [Also (same title), IBM Palo Alto Scientific Center Report PASC G320-3518, November, 1988 (unpublished).]Google Scholar
  4. 4.
    B. H. Armstrong, Self Diffusion at the Melting Point and Theory of Melting, IBM Palo Alto Scientific Center Report G320-3519, Dec. 1988 (unpublished).Google Scholar
  5. 5.
    R. M. Cotterill, E. J. Jensen, and W. D. Kristensen, in Anharmonic Lattices, Structural Transitions and Melting (Noordhoff, Leiden, 1974).Google Scholar
  6. 6.
    T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1988).Google Scholar
  7. 7.
    A. Papoulis, The Fourier Integral and Its Applications (McGraw-Hill, New York, 1962).Google Scholar
  8. 8.
    L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, New York, 1968), p. 60 ff.Google Scholar
  9. 9.
    M. Roufosse and P. G. Klemens, Phys. Rev. B 7:5379 (1973).Google Scholar
  10. 10.
    D. Pines, Elementary Excitations in Solids (W. A. Benjamin, New York, 1964), p. 52.Google Scholar
  11. 11.
    J. Skalyo, Jr., Y. Endoh, and G. Shirane, Phys. Rev. 89:1797 (1974).Google Scholar
  12. 12.
    P. A. Fleury, in Anharmonic Lattices, Structural Transitions and Melting (Noordhoff, Leiden, 1974).Google Scholar
  13. 13.
    J. M. Ziman, Electrons and Phonons (Oxford University Press, London, 1963).Google Scholar
  14. 14.
    P. A. Egelstaff, An Introduction to the Liquid State (Academic Press, London, 1967).Google Scholar
  15. 15.
    T. E. Faber, Introduction to the Theory of Liquid Metals (Cambridge University Press, London, 1972).Google Scholar
  16. 16.
    D. L. Martin, Phys. Rev. 139:A150 (1965).Google Scholar
  17. 17.
    K. A. Gschneidner, Jr., in Solid State Physics, F. Seitz and D. Turnbull, eds. (Academic Press, New York, 1964), Vol. 16, pp. 275–385.Google Scholar
  18. 18.
    P. A. Egelstaff, B. C. Haywood, and F. J. Webb, Proc. Phys. Soc. 90:681 (1967).Google Scholar
  19. 19.
    D. E. Gray, ed., American Institute of Physics Handbook, Sec. Ed. (McGraw-Hill, New York, 1963), pp. 2–20.Google Scholar
  20. 20.
    J. P. Hansen and I. R. McDonald, Theory of Simple Metals, Sec. Ed. (Academic Press, London, 1986), p. 4.Google Scholar
  21. 21.
    G. Busch and H. Schade, Lectures on Solid State Physics (Pergamon Press, Oxford, 1976), p. 63.Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • B. H. Armstrong
    • 1
  1. 1.IBM Palo Alto Scientific CenterPalo AltoUSA

Personalised recommendations