Skip to main content
Log in

Importance of thermophysical data in process simulation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The need for thermophysical properties of components and their mixtures has grown as computer simulation of processes has developed and expanded. Although equations of state require fewer input data, they are not yet generally applicable to all types of systems. Accordingly, in many cases, the liquid activity models are still very much required. A long-time disadvantage of the liquid activity method, for systems containing supercritical components, is overcome if the Henry constant is utilized. A van Laar-type interpolative equation provides the Henry constant in liquid mixtures from the values in the pure liquid components. The addition of a ternary interaction in addition to the usual binary ones provides improved MVL prediction of phase equilibria, espcially VLLE involving three phases. Examination of the consistency of thermal properties is made feasible with the aid of a generalized reduced Frost-Kalkwarf vapor pressure equation. It is useful also for extending and supplementing sparse data and for predicting properties from the structure and boiling point. Possible trends in properties needed and their availability to simulators are discussed in view of available computer facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. van Laar, Z. Phys. Chem. 72:723 (1910); J. J. van Laar, Z. Phys. Chem. 83:599 (1913); J. J. van Laar, Z. Anorg. Allgem. Chem. 185:35 (1929).

    Google Scholar 

  2. M. Margules, Sitzber. Alad. Wiss. Wien Math. Naturw. Kl II 104:1243 (1895).

    Google Scholar 

  3. J. Hildebrand, J. Am. Chem. Soc. 51:66 (1929); J. Hildebrand, J. Am. Chem. Soc. 57:866 (1935).

    Google Scholar 

  4. G. Scatchard, J. Am. Chem. Soc. 62:2426 (1940).

    Google Scholar 

  5. K. Wohl, Trans. Am. Inst. Chem. Eng. 42:215 (1946).

    Google Scholar 

  6. C. Black, Ind. Eng. Chem. 50:403 (1958).

    Google Scholar 

  7. O. Redlich and A. T. Kister, Ind. Eng. Chem. 40:345 (1948).

    Google Scholar 

  8. G. M. Wilson, J. Am. Chem. Soc. 86:127 (1964).

    Google Scholar 

  9. D. S. Abrams and J. M. Prausnitz, Am. Inst. Chem. Eng. J. 21:116 (1975).

    Google Scholar 

  10. H. Renon and J. M. Prausnitz, Am. Inst. Chem. Eng. J. 14:135 (1968).

    Google Scholar 

  11. E. L. Derr and C. H. Deal, Inst. Chem. Eng. Symp. Ser. Lond. 3:40 (1969). K. Kojima and K. Tochigi, Prediction of VLE by the ASOG Method (Elsevier, New York, 1979).

    Google Scholar 

  12. A. Fredenslund, R. L. Jones, and J. M. Prausnitz, Am. Inst. Chem. Eng. J. 21:1086 (1975).

    Google Scholar 

  13. A. Fredenslund, J. Gmehling, and P. Rasmussen, Vapor-Liquid Equilibria Using UNIFAC (Elsevier, New York, 1977).

    Google Scholar 

  14. R. R. White, Trans. Am. Inst. Chem. Eng. 41:539 (1945).

    Google Scholar 

  15. R. E. Harris, Chem. Eng. Prog. 68:57 (1972).

    Google Scholar 

  16. A. Fredenslund, Reported at AIChE meeting (Nov. 1984).

  17. P. S. Chapelear, G. A. Casternares, and T. W. Leland, AIChE Symp. Ser. 140 70 (1974).

  18. R. C. Reid, Fluid Phase Equil. 13:1 (1983).

    Google Scholar 

  19. M. Benedict, G. B. Webb, and L. C. Rubin, J. Chem. Phys. 8:334 (1940); 10:747 (1942).

    Google Scholar 

  20. M. Benedict, G. B. Webb, and L. C. Rubin, Chem. Eng. Prog. 47:419 (1951).

    Google Scholar 

  21. O. Redlich and J. N. S. Kwong, Chem. Rev. 44:233 (1949).

    Google Scholar 

  22. G. Soave, Chem. Eng. Sci. 27:1197 (1972).

    Google Scholar 

  23. K. E. Starling, Hydrocarbon Proc. 50:101 (1971).

    Google Scholar 

  24. B. I. Lee and M. G. Kesler, Am. Inst. Chem. Eng. J. 21:510 (1975).

    Google Scholar 

  25. D. Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fund. 15:59 (1976).

    Google Scholar 

  26. D. Luedecke and J. M. Prausnitz, Fluid Phase Equil. 22:1 (1985).

    Google Scholar 

  27. P. Vimalchand and M. D. Donohue, Presented at the annual AIChE meeting (Nov. 1982).

  28. G. Kolasinka, R. A. S. Moorwood, and H. Wenzel, Fluid Phase Equil. 13:121 (1983).

    Google Scholar 

  29. K. E. Gubbins, Fluid Phase Equil. 13:35 (1983).

    Google Scholar 

  30. C. Black, Ind. Eng. Chem. 50:391 (1958); C. Black et al., Advances in Chemistry Series 115 (Am. Chem. Soc., Washington, D.C., 1972).

    Google Scholar 

  31. J. G. Hayden and J. P. O'Connell, Ind. Eng. Chem. Process Des. Dev. 14:209 (1975).

    Google Scholar 

  32. K. Y. Song and R. Kobayashi, GPA Research Report RR-80 (May 1984).

  33. P. C. Gillespie and G. M. Wilson, GPA Research Report RR-48.

  34. S. Takahashi, K. Y. Song, and R. Kobayashi, Presenyed at Summer National Meeting AIChE, Denver, Colo. (Aug. 1983).

  35. J. Porter, Petroleum Trans. AIME 189:235 (1950).

    Google Scholar 

  36. A. Rosman, Presented at 47th Annual Fall Meeting of the Society of Petroleum Engineers of AIME, San Antonio, Tex. (1972).

  37. D. L. Katz, D. Cornel, R. Kobayashi, F. H. Poeltmann, S. H. Vary, J. R. Ellenbaras, and C. F. Weinaug, Handbook of Natural Gas Engineering (McGraw-Hill, New York, 1959).

    Google Scholar 

  38. J. Gmehling, U. Onken, and W. Arlt, Vapor-Liquid Equilibrium Data Collection (Chemistry Data Service, Dechema, Germany, 1977).

    Google Scholar 

  39. J. M. Sorensen and W. Arlt, Liquid-Liquid Equilibrium Data Collection (Chemistry Data Service, Dechema, Germany, 1980).

    Google Scholar 

  40. A. W. Francis, Critical Solution Temperatures, Advances in Chemistry Series 31 (Am. Chem. Soc., Washington, D.C., 1961).

    Google Scholar 

  41. L. H. Horsley, Advances in Chemistry Series 116 (Am. Chem. Soc., Washington, D.C., 1973).

    Google Scholar 

  42. C. Christensen, J. Gmehling, P. Rasmussen, and U. Weidlich, Heats of Mixing Data Collection (Chemistry Data Service, Dechema, Germany, 1984).

    Google Scholar 

  43. J. J. Christensen, R. W. Hanks, and R. M. Izatt, Handbook of Heats of Mixing (John Wiley & Sons, New York, 1982).

    Google Scholar 

  44. A. G. Morachevskii and V. P. Belousov, Vestn. Leningr. Univ. Fiz. Khim. 13:117 (1958).

    Google Scholar 

  45. Young and Fortey, J. Chem. Soc. Trans. 81:717 (1902).

    Google Scholar 

  46. A. L. Lydersen, Estimation of Critical Properties of Organic Compounds, Wis. Coll. Eng., Eng. Exp. Stan. Rep. 3, Madison (Apr. 1955).

  47. D. N. Rihani and L. K. Doraiswamy, Ind. Eng. Chem. Fund. 4:17 (1965).

    Google Scholar 

  48. S. W. Benson, Thermochemical Kinetics (Wiley, New York, 1968), Chap. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Black, C. Importance of thermophysical data in process simulation. Int J Thermophys 7, 987–1002 (1986). https://doi.org/10.1007/BF00503853

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503853

Key words

Navigation