Skip to main content
Log in

Monte Carlo study of the thermodynamics and structure of dense supercritical water

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A system of 64 water molecules with a TIPS2 intermolecular pair potential was studied by the NPT-ensemble Monte Carlo method at 773 K and 100, 1000, and 3000 MPa. The values of enthalpy, specific volume, isobaric heat capacity, isothermal compressibility, and thermal expansion coefficients were obtained and found to be in good agreement with estimates from two equations of state of water. Computed atom-atom radial distribution functions agree well with recent high-temperature X-ray diffraction data. The effect of temperature and density increases on the O-O, O-H, and H-H correlations in water was analyzed. A quantitative comparison was made between thermodynamic properties and radial distribution functions of dense supercritical water and the simple Lennard-Jones fluid. The convergence rate was noted to increase under the conditions studied in comparison with Monte Carlo simulations of liquid water at normal temperature and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Beveridge, M. Mezei, P. K. Mehrotra, F. T. Marchese, G. Ravi-Shanker, T. Vasu, and S. Swaminathan, in Molecular-Based Study of Fluids, J. M. Haile and G. A. Mansoori, eds. (American Chemical Society, Washington, D.C., 1983), pp. 297–351.

    Google Scholar 

  2. F. H. Stillinger and A. Rahman, J. Chem. Phys. 61:4973 (1974).

    Google Scholar 

  3. R. W. Impey, M. L. Klein, and I. R. McDonald, J. Chem. Phys. 74:647 (1981).

    Google Scholar 

  4. Y. Kataoka, H. Hamada, S. Nosé, and T. Yamamoto, J. Chem. Phys. 77:5699 (1982).

    Google Scholar 

  5. S. F. O'Shea and P. R. Tremaine, J. Phys. Chem. 84:3304 (1980).

    Google Scholar 

  6. O. Matsuoka, E. Clementi, and M. Yoshimine, J. Chem. Phys. 64:1351 (1976).

    Google Scholar 

  7. L. Haar, J. S. Gallagher, and G. S. Kell, in Proceedings 8th Symposium on Thermophysical Properties, J. V. Sengers, ed. (ASME, New York, 1982), Vol. II, pp. 298–302.

    Google Scholar 

  8. J. C. Owicki and H. A. Scheraga, J. Am. Chem. Soc. 99:7403 (1977).

    Google Scholar 

  9. J. Jusa, O. Sifner, and V. Hoffer, Acta Tech. CSAV 24:251 (1979).

    Google Scholar 

  10. Yu. E. Gorbaty and Yu. N. Demianets, Chem. Phys. Lett. 100:450 (1983); Zh. Struct. Khim. 24:66 (1983) (Russian).

    Google Scholar 

  11. S. D. Hammann, in Chemistry and Geochemistry of Solutions at High Temperatures and Pressures, Physics and Chemistry of the Earth, Vols. 13–14, D. T. Rickard and F. W. Wickman, eds. (Pergamon Press, Oxford, 1981), p. 89.

    Google Scholar 

  12. W. W. Wood, in Physics of Simple Liquids, H. N. V. Temperely, J. S. Rowlinson and G. S. Rushbrooke, eds. (North-Holland, Amsterdam, 1968), Chap. 5.

    Google Scholar 

  13. W. L. Jorgensen, J. Chem. Phys. 77:4156 (1982).

    Google Scholar 

  14. J. A. Barker and R. O. Watts, Chem. Phys. Lett. 3:144 (1969).

    Google Scholar 

  15. T. A. Andrea, W. S. Swope, and H. C. Andersen, J. Chem. Phys. 79:4576 (1983).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1976), pp. 369–375 (Russian).

    Google Scholar 

  17. A. G. Kalinichev, Teplofiz. Vys. Temp. 23:683 (1985) (Russian).

    Google Scholar 

  18. V. P. Glushko (eds.), Thermodynamic Properties of Individual Substances, Vol.I, Part 2 (Nauka, Moscow, 1978), p. 310 (Russian).

    Google Scholar 

  19. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79:926 (1983).

    Google Scholar 

  20. J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures, 3rd ed. (Butterworth, London, 1982), pp. 37–42.

    Google Scholar 

  21. P. H. Berens, D. M. Mackay, G. M. White, and K. R. Wilson, J. Chem. Phys. 79:2375 (1983).

    Google Scholar 

  22. W. L. Jorgensen, Chem. Phys. Lett. 92:405 (1982).

    Google Scholar 

  23. A. G. Kalinichev, in Application of Mathematical Methods for Description and Study of Physical-Chemical Equilibria, Part III (SO AN SSSR, Novosibirsk, 1985), pp. 89–93 (Russian).

    Google Scholar 

  24. K. Binder, in Monte Carlo Methods in Statistical Physics (Springer, Berlin, 1979), p. 18.

    Google Scholar 

  25. J. J. Nicolas, K. E. Gubbins, W. B. Streett, and D. J. Tildesley, Mol. Phys. 37:1429 (1979).

    Google Scholar 

  26. F. H. Ree, J. Chem. Phys. 76:6287 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinichev, A.G. Monte Carlo study of the thermodynamics and structure of dense supercritical water. Int J Thermophys 7, 887–900 (1986). https://doi.org/10.1007/BF00503845

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503845

Key words

Navigation