International Journal of Thermophysics

, Volume 7, Issue 4, pp 863–876 | Cite as

Polydispersity in fluids and composites: Some theoretical results

  • G. Stell
  • P. A. Rikvold


The effect of polydispersity in particle size on the structure of a solution or suspension of hard spheres in a continuum solvent is considered, with emphasis on the leading concentration corrections to ideal behavior on the pair distribution function and equation of state. Polydispersity in dispersions of randomly centered spherical particles and parallel cylindrical particles with randomly placed axes is also considered.

Key words

composites dispersions n-point matrix functions pair distribution function polydispersity structure thermodynamics transport coefficients 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. Solids 19:35 (1961); C. Wagner, Z. Elektrochem. 65:581 (1961).Google Scholar
  2. 2.
    G. V. Shulz, Z. Phys. Chem. B43:25 (1939).Google Scholar
  3. 3.
    H. Cramer, Mathematical Methods of Statistics (Princeton University Press, Princeton. N.J., 1954).Google Scholar
  4. 4.
    G. Stell and P. A. Rikvold, Polydispersity in Fluids, Dispersions, and Composites; Some Theoretical Results, Chem. Eng. Comm. (1986, in press).Google Scholar
  5. 5.
    L. Blum and G. Stell, J. Chem. Phys. 71:42 (1979).Google Scholar
  6. 6.
    L. Blum and G. Stell, J. Chem. Phys. 72:2212 (1980).Google Scholar
  7. 7.
    J. Salacuse and G. Stell, J. Chem. Phys. 77:3714 (1983). We take this opportunity to correct a misprint in this paper: In Eq. (3.9) for the pressure obtained from the virial theorem, the last term in the numerator should be 3ξ23, in the original notation of Salacuse and Stell.Google Scholar
  8. 8.
    H. K. Chelliah, Some Applications of Statistical Mechanics to Polydisperse Systems, M.S. thesis (State University of New York at Stony Brook, Stony Brook, 1984).Google Scholar
  9. 9.
    R. K. Korlipara and G. Stell, The Two-Point Matrix Probability Function and the Radial Distribution Function for Polydisperse Systems of Spheres, SUNY CEAS Report 433 (Nov. 1983).Google Scholar
  10. 10.
    G. Stell (unpublished). These general expressions for g 2 and the various thermodynamic quantities in terms of g2, which appear here in Sections 2 and 3, are direct generalizations of well-known expressions for mixtures of discrete numbers of components.Google Scholar
  11. 11.
    See, e.g., G. Stell, in The Equilibrium Theory of Classical Fluids, H. L. Frisch and J. L. Lebowitz, eds. (Benjamin, New York, 1964).Google Scholar
  12. 12.
    J. J. Salacuse and G. Stell (unpublished).Google Scholar
  13. 13.
    G. A. Mansoori, N. F. Carnahan, K. E. Starling, and T. W. Leland, J. Chem. Phys. 54:1523 (1971).Google Scholar
  14. 14.
    A. Vrij, Chem. Phys. Lett. 53:144 (1978); J. Chem. Phys. 69:1742 (1978); 71:3267 (1979); P. van Beurten and A. Vrij, J. Chem. Phys. 74:2744 (1981).Google Scholar
  15. 15.
    R. K. Korlipara and G. Stell (unpublished).Google Scholar
  16. 16.
    G. Batchelor, Annu. Rep. Fluid Mech. 6:227 (1974).Google Scholar
  17. 17.
    A. E. Scheidegger, Physics of Flow Through Porous Media (Macmillan, New York, 1960).Google Scholar
  18. 18.
    F. A. L. Dullien, Porous Media. Fluid Transport and Pore Structure (Academic, New York, 1979).Google Scholar
  19. 19.
    R. M. Christensen, Mechanics of Composite Materials (Wiley Interscience, New York, 1979); Z. Hashin, J. Appl. Mech. 50:481 (1983); G. Milton, Phys. Rev. Lett. 46:542 (1981); J. Mech. Phys. Solids 30:177 (1982).Google Scholar
  20. 20.
    G. Milton, J. Appl. Phys. 52:5294 (1981).Google Scholar
  21. 21.
    S. Torquato and G. Stell, J. Chem. Phys. 77:2071 (1982).Google Scholar
  22. 22.
    S. Torquato and G. Stell, J. Chem. Phys. 78:3262 (1983).Google Scholar
  23. 23.
    S. Torquato and G. Stell, J. Chem. Phys. 79:1505 (1983).Google Scholar
  24. 24.
    Z. Hashin and S. Shtrikman, J. Appl. Phys. 33:3125 (1962).Google Scholar
  25. 25.
    A. L. De Vera and W. Strieder, J. Phys. Chem. 81:1783 (1977).Google Scholar
  26. 26.
    H. L. Weissberg, J. Appl. Phys. 34:2636 (1963).Google Scholar
  27. 27.
    W. F. Brown, Trans. Soc. Rheol. 9(1):357 (1965).Google Scholar
  28. 28.
    M. Beran, Nuovo Cimento 38:771 (1965).Google Scholar
  29. 29.
    C. G. Joslin and G. Stell, J. Appl. Phys. (1986), (in press).Google Scholar
  30. 30.
    S. Torquato and G. Stell, Lett. Appl. Eng. Sci. 23:375 (1985).Google Scholar
  31. 31.
    P. A. Rikvold and G. Stell, J. Colloid Interface Sci. 108:158 (1985).Google Scholar
  32. 32.
    J. C. Gidding, E. Kucera, C. P. Russell, and M. N. Myers, J. Phys. Chem. 72:4397 (1968).Google Scholar
  33. 33.
    M. E. van Kreveld and N. van den Hoed, J. Chromatrogr. 83:111 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • G. Stell
    • 1
  • P. A. Rikvold
    • 1
  1. 1.Departments of Mechanical Engineering and ChemistryState University of New YorkStony BrookUSA

Personalised recommendations