Advertisement

International Journal of Thermophysics

, Volume 8, Issue 5, pp 593–606 | Cite as

Thermal conductivity of Inconel 718 and 304 stainless steel

  • J. N. Sweet
  • E. P. Roth
  • M. Moss
Article

Abstract

The results of thermal conductivity measurements on Inconel 718 and 304 stainless steel by the comparative and flash diffusivity techniques are reported for the temperature range 0–700°C. For 304 stainless steel, excellent agreement with published data is found for the specific heat, thermal diffusivity, and thermal conductivity. In the case of Inconel 718, the measurements show that the conductivity depends critically on the sample thermal history and the metallurgical condition of the alloy. Measurements on a solution-treated sample indicated a conductivity function close to that reported previously, while precipitated samples showed a higher conductivity, similar to the conductivityvs-temperature function used for reduction of comparative thermal conductivity data with Inconel 718 references. These results indicate that Inconel 718 is not a suitable reference for high-accuracy comparative thermal conductivity measurements unless its thermal history and associated conductivity function are known.

Key words

comparative technique Inconel 718 stainless steel standards thermal conductivity thermal diffusivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. N. Sweet, M. Moss, and C. E. Sisson, in Thermal Conductivity 18, Proceedings of the Eighteenth International Conference on Thermal Conductivity, T. Ashworth and D. R. Smith, eds. (Plenum, New York, 1985), pp. 43–59.Google Scholar
  2. 2.
    J. N. Sweet, E. P. Roth, M. Moss, G. M. Haseman, A. J. Anaya, Comparative Thermal Conductivity Measurements at Sandia National Laboratories, Sandia National Laboratories Report SAND86-0840 (1986).Google Scholar
  3. 3.
    The Dynatech Model TCFCM comparative thermal conductivity instrument is manufactured by Dynatech R/D Co., Cambridge, Mass. Reference to a particular product or company implies neither a recommendation nor an endorsement by Sandia National Laboratories, nor a lack of suitable substitutes.Google Scholar
  4. 4.
    R. H. Bogaard, in Thermal Conductivity 18, Proceedings of the Eighteenth International Conference on Thermal Conductivity, T. Ashworth and D. R. Smith, eds. (Plenum, New York, 1985), pp. 175–185.Google Scholar
  5. 5.
    Y. S. Touloukian, ed., TPRC Data Series—Vol. 1, Thermal Conductivity of Metallic Elements and Alloys (IFI/Plenum, New York, 1970), p. 170.Google Scholar
  6. 6.
    J. N. Sweet, Int. J. Thermophys. 7:743 (1986).Google Scholar
  7. 7.
    The Dynatech recommended conductivity functions are reproduced in, M. Moss, J. A. Koski, and G. M. Haseman, Measurement of Thermal Conductivity by the Comparative Technique, Sandia National Laboratories Report SAND82-0109 (1982).Google Scholar
  8. 8.
    W. J. Parker, R. J. Jenkins, et al., A Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity, U.S. Navy Technical Report USNRDL-TR-424, May (1960).Google Scholar
  9. 9.
    J. A. Koski, in Proceedings of the Eighth Symposium on Thermophysical Properties, Vol. II. Thermophysical Properties of Solids and Selected Fluids for Energy Technology (ASME, New York, 1982), pp. 94–103.Google Scholar
  10. 10.
    E. Fitzer, Results of the Cooperative Measurements on Heat Transport Properties up to 2800 K, AGARD-R-606 (Technical Editing and Reproduction Ltd., Harford House, 7-9 Charlotte St., London WIP 1HD, 1973).Google Scholar
  11. 11.
    J. E. Callahan and S. A. Sulivan, Rev. Sci. Instrum. 57:10 (1986).Google Scholar
  12. 12.
    Y. S. Touloukian and C. Y. Ho, Thermophysical Properties of Selected Aerospace Materials, Part II. Thermophysical Properties of Seven Materials (CINDAS-Purdue University, West Lafayette, Ind., 1977).Google Scholar
  13. 13.
    R. P. Tye, R. W. Hayden, and S. C. Spinney, High Temp. High Press. 4:503 (1972).Google Scholar
  14. 14.
    C. R. Brooks, M. Cash, and A. Garcia, J. Nuclear Mater. 78:419 (1978).Google Scholar
  15. 15.
    D. L. McElroy, R. K. Williams, J. P. Moore, R. S. Graves, and F. J. Weaver, in Thermal Conductivity 15, V. V. Mirkovich, ed. (Plenum, New York, 1978), pp. 149–151.Google Scholar
  16. 16.
    M. Moss, M. M. Karnowsky, and J. N. Sweet, in Fundamentals of Conduction and Recent Developments in Contact Resistance, Book No. H-00388, Vol. HTD-69, M. Imber, G. P. Peterson, and M. M. Yovanovich, eds. (ASME, New York, 1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • J. N. Sweet
    • 1
  • E. P. Roth
    • 1
  • M. Moss
    • 1
  1. 1.Thermophysical Properties Division, 1824Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations