Skip to main content
Log in

Enthalpy and heat capacity of the actinide oxides

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The available enthalpy data on UO2, ThO2, PuO2, (Th, U)O2, and (Pu, U)O2 have been analyzed and equations have been derived to fit the data. Phase transitions were found in UO2, ThO2, (Th, U)O2, and (Pu, U)O2. The high temperature PuO2 data were too scattered to determine whether a phase transition exists. Above the phase transition temperature, the enthalpy data were fit with a linear equation. Enthalpy data for PuO2 and ThO2 below the phase transition temperature were fit with two-term equations whose contributions are due to phonons and thermal expansion. For UO2 below its phase transition, a term for an electronic contribution was added to this basic equation. Below the phase transitions for (Th, U)O2, enthalpy data were fit by a mole average of the equations used to fit the ThO2 and UO2 data below their phase transitions; however, the mole average equation was not valid for 90 and 92% ThO2 in the mixed oxide. Since it was found that mole averages of the PuO2 and UO2 data do not fit the (Pu, U)O2 data, these data were fit with an equation of the same form as that that used for UO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Kerrisk and D. G. Clifton, Nucl. Technol. 16:53 (1972).

    Google Scholar 

  2. R. A. Young, J. Nucl. Mater. 87:283 (1979).

    Google Scholar 

  3. J. H. Harding, P. Masri, and A. M. Stoneham, J. Nucl. Mater. 92:73 (1980).

    Google Scholar 

  4. D. A. Melendres and C. R. A. Catlow, J. Nucl. Mater. 89:354 (1980).

    Google Scholar 

  5. R. J. Thorn, G. H. Winslow, and J. S. Ziomek, J. Nucl. Mater. 87:416 (1979).

    Google Scholar 

  6. P. Browning, J. Nucl. Mater. 98:345 (1981).

    Google Scholar 

  7. M. H. Rand, R. J. Ackermann, F. Gronvold, F. L. Oetting, and A. A. Pattoret, Int. Rev. Hautes Temp. Réfract. 15:355 (1978).

    Google Scholar 

  8. J. K. Fink, M. G. Chasanov, and L. Leibowitz, Enthalpy and heat capacity of solid UO2, ANL Report ANL-CEN-RSD-81-2 (Argonne National Laboratory, May 1981).

  9. C. Kittel, Introduction to Solid, State Physics, 5th ed. (John Wiley & Sons, New York, 1976), pp. 130–139.

    Google Scholar 

  10. J. S. Rowlinson, Liquids and Liquid Mixtures, 2nd ed. (Butterworth, London, 1969), p. 15.

    Google Scholar 

  11. J. K. Fink, M. G. Chasanov, and L. Leibowitz, Thermodynamic Properties of Uranium Dioxide, ANL Report ANL-CEN-RSD-80-3 (Argonne National Laboratory, April 1981).

  12. G. E. Moore and K. K. Kelley, J. Am. Chem. Soc. 69:2105 (1947).

    Google Scholar 

  13. A. E. Ogard and J. A. Leary, High-temperature heat content and heat capacity of uranium dioxide and uranium dioxide-plutonium dioxide solid solutions, in Thermodynamics of Nuclear Materials (IAEA, Vienna, 1968), p. 651.

    Google Scholar 

  14. R. A. Hein and P. N. Flagella, Enthalpy measurements of UO2 and Tungsten to 3260 K, GE Report GEMP-578 (General Electric, February 16, 1968).

  15. R. A. Hein, L. A. Sjodahl, and R. Szwarc, J. Nucl. Mater. 25:99 (1968).

    Google Scholar 

  16. J. B. Conway and R. A. Hein, J. Nucl. Mater. 15:149 (1965).

    Google Scholar 

  17. D. R. Frederickson and M. G. Chasanov, J. Chem. Thermo. 2:263 (1970).

    Google Scholar 

  18. L. Leibowitz, L. W. Mishler, and M. G. Chasanov, J. Nucl. Mater. 29:356 (1969).

    Google Scholar 

  19. F. Gronvold, N. J. Kvseth, A. Sveen, and J. Tichy', J. Chem. Thermo. 2:665 (1970).

    Google Scholar 

  20. J. J. Huntzicker and E. F. Westrum, J. Chem. Thermo. 3:61 (1971).

    Google Scholar 

  21. M. M. Popov, G. L. Gal'chenko, and M. D. Seniv, Zh. Neorg. Khim. 3:1734 (1958); Trans. J. Inorg. Chem., USSR 3:18 (1958).

    Google Scholar 

  22. T. K. Engel, J. Nucl. Mater. 31:211 (1969).

    Google Scholar 

  23. C. Affortit and J. Marcon, Rev. Int. Hautes Temp. Réfract. 7:236 (1970).

    Google Scholar 

  24. C. Affortit, High Temp.-High Press. 1:27 (1969).

    Google Scholar 

  25. M. A. Bredig, L'étude des transformations crystallines a hautes temperatures, (CNRS, Paris, 1972), p. 183 (Proceedings of a conference held in Odeillo, France, 1971).

    Google Scholar 

  26. P. R. Bevington, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, New York, 1969).

    Google Scholar 

  27. D. F. Fischer, J. K. Fink, and L. Leibowitz, J. Nucl. Mater. 102:220 (1981).

    Google Scholar 

  28. J. K. Fink, M. G. Chasanov, and L. Leibowitz, Thermal conductivity and thermal diffusivity of solid UO2, ANL Report ANL-CEN-RSD-81-3 (Argonne National Laboratory, June 1981).

  29. J. K. Fink, M. G. Chasanov, and L. Leibowitz, Consistency in thermophysical properties: enthalpy, heat capacity, thermal conductivity, and thermal diffusivity of UO2, in Proc. Eighth Symp. Thermophysical Properties, J. V. Sengers, ed. (Am. Soc. Mech. Engrs., New York, 1982).

    Google Scholar 

  30. M. Hoch and H. G. Johnston, J. Phys. Chem. 65:1184 (1961).

    Google Scholar 

  31. F. M. Jaeger and W. A. Veenstra, Proc. Acad. Sci. Amst. 37:327 (1934).

    Google Scholar 

  32. J. C. Southard, J. Am. Chem. Soc. 63:3142 (1941).

    Google Scholar 

  33. A. C. Victor and T. B. Douglas, J. Res. Natl. Bur. Stand. U.S. A65:105 (1961).

    Google Scholar 

  34. J. R. Springer, E. A. Eldridge, N. U. Goodyear, T. R. Wright, and J. F. Lagedrost, Fabrication, characterization, and thermal property measurements of ThO2-UO2 Fuel Materials, BMI Report BMI-X-10210 (Battelle Memorial Institute, October 1967).

  35. D. W. Osborne and E. F. Westrum, J. Chem. Phys. 21:1884 (1953).

    Google Scholar 

  36. O. D. Slagle, private communication.

  37. O. L. Kruger and H. J. Savage, J. Chem. Phys. 49:4540 (1968).

    Google Scholar 

  38. A. E. Ogard, High-temperature heat content of plutonium dioxide, in Plutonium 1970 and Other Actinides, Proc. 4th Int. Conf. Plutonium and Other Actinides, Sante Fe, N.M. (1970), Vol. 1, p. 78.

  39. F. L. Oetting and G. E. Bixby, The chemical thermodynamics of nuclear materials. VII. The high-temperature enthalpy of plutonium oxide (to be published in J. Nucl. Mater.).

  40. L. Leibowitz, private communication.

  41. A. E. Flotow, D. W. Osborne, S. M. Fried, and J. G. Malm, J. Chem. Phys. 65:1124 (1976).

    Google Scholar 

  42. D. F. Fischer, J. K. Fink, L. Leibowitz, and J. Bell, Enthalpy of thorium uranium oxides: (Th0.70U0.30)O2, (Th0.85U0.15)O2, and (Th0.92U0.08)O2 from 2300 to 3400 K (to be published).

  43. L. Leibowitz, D. F. Fischer, and M. G. Chasanov, J. Nucl. Mater. 42:113 (1972).

    Google Scholar 

  44. L. Leibowitz, D. F. Fischer, and M. G. Chasanov, Enthalpy of molten-plutonium oxides, ANL Report ANL-8082 (Argonne National Laboratory, Februrary 1974).

  45. R. L. Gibby, Enthalpy and heat capacity of U.75Pu.25O2−x(25–1490°C), HEDL-TME 73-19 (Hanford Engineering Laboratory, January 1973).

  46. D. G. Clifton, High temperature calorimetry, in Quarterly Status Report on the Advanced Plutonium Fuels Program April to June 30, 1971 and Fifth Annual Report, FY 1971, R. D. Baker, ed., LA-4749-MS (Los Alamos Scientific Laboratory, 1971), p. 28.

  47. R. L. Gibby, L. Leibowitz, J. F. Kerrisk, and D. G. Clifton, J. Nucl. Mater. 50:155 (1974).

    Google Scholar 

  48. E. H. Randklev and E. A. Hinman, Fission gas behavior in mixed-oxide fuel during overpower and thermal transient tests, Proc. Int. Conf. Fast Breeder Reactor Fuel Performance, Monterey, Calif. (March 5–8, 1979), p. 405.

  49. B. T. M. Willis, Proc. Roy. Soc. 274:122 (1963).

    Google Scholar 

  50. B. T. M. Willis, Proc. Roy. Soc. 274:134 (1963).

    Google Scholar 

  51. Thermodynamic and Transport Properties of Uranium Dioxide and Related Phases, Technical Report Series 39 (IAEA Vienna, 1965), p. 28.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fink, J.K. Enthalpy and heat capacity of the actinide oxides. Int J Thermophys 3, 165–200 (1982). https://doi.org/10.1007/BF00503638

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503638

Key words

Navigation