Skip to main content
Log in

Thermodynamic analysis of manganese

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A description of the Gibbs energy of the various solid modifications of manganese at 101325 Pa has been obtained for the whole temperature range from 298 K to the melting point. The present analysis accounts for the effect of a magnetic transition in α-, γ-, and δ-Mn, which is treated using the Inden-Hillert-Jarl phenomenological model for the magnetic Gibbs energy. Our description involves smaller magnetic contributions to the entropy of these phases than suggested in the classical work by Weiss and Tauer. An expression for the Gibbs energy of the liquid phase is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Tauer and R. J. Weiss, J. Phys. Chem. Solids 2:237 (1957).

    Google Scholar 

  2. R. J. Weiss and K. J. Tauer, J. Phys. Chem. Solids 4:135 (1958).

    Google Scholar 

  3. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values for the Thermodynamic Properties of the Elements (American Society for Metals, Metals Park, Ohio, 1973), pp. 301–308.

    Google Scholar 

  4. B. F. Naylor, J. Chem. Phys. 13:329 (1945).

    Google Scholar 

  5. M. Hillert, Trita-Mac-0305 (Revised) (Royal Institute of Technology, Stockholm, Sweden, Feb. 1986).

    Google Scholar 

  6. P. D. Desai, J. Phys. Chem. Ref. Data 16:91 (1987).

    Google Scholar 

  7. G. Inden, Project Meeting Calphad V. Ch. 111, 4 (Düsseldorf, Max Planck Institut Eisenforsch., 1976), pp. 1–13.

    Google Scholar 

  8. M. Hillert and M. Jarl, Calphad 2:227 (1978).

    Google Scholar 

  9. A. Fernández Guillermet and P. Gustafson, High Temp. High Press. 16:591 (1985).

    Google Scholar 

  10. A. Fernández Guillermet, Int. J. Thermophys. 8:481 (1987).

    Google Scholar 

  11. A. Dinsdale, Unpublished (National Physical Laboratory, Teddington, Middlesex, U.K., 1985).

  12. A. Fernández Guillermet, High Temp. High Press. 19:477 (1987).

    Google Scholar 

  13. A. Fernández Guillermet, Z. Metallkunde 78:639 (1987).

    Google Scholar 

  14. Zhong Shu Xing, D. D. Gohil, A. T. Dinsdale, and T. Chart, National Physical Laboratory DMA (A) 103, London (1985).

  15. A. Fernández Guillermet, Calphad 13:1 (1989).

    Google Scholar 

  16. H. Thirring, Phys. Z. 14:867 (1913); O. Stern, Ann. Phys. Leipzig 51:237 (1916).

    Google Scholar 

  17. A. Fernández Guillermet and G. Grimvall, J. Less-Common Metals 147:195 (1989).

    Google Scholar 

  18. J. O. Andersson, A. Fernández Guillermet, P. Gustafson, M. Hillert, B. Jansson, B. Jönsson, B. Sundman, and J. Ågren, Calphad 11:95 (1987).

    Google Scholar 

  19. A. Paskin, J. Phys. Chem. Solids 2:232 (1957).

    Google Scholar 

  20. J. Donohue, The Structures of the Elements (R. E. Krieger, Malabar, Fla., 1982), pp. 191–200.

    Google Scholar 

  21. C. G. Shull and M. K. Wilkinson, Rev. Modern Phys. 25:100 (1953).

    Google Scholar 

  22. P. Franzosini and C. G. Losa, Z. Naturforsch. 19A:1348 (1964).

    Google Scholar 

  23. N. Mori and T. Mitsui, Phys. Lett. 39A:413 (1972).

    Google Scholar 

  24. N. S. Petrenko, V. P. Popov, and V. A. Finkel, Phys. Lett. 47A:471 (1974).

    Google Scholar 

  25. J. S. Kasper and B. W. Roberts, Phys. Rev. 15:537 (1956).

    Google Scholar 

  26. J. A. Oberteuffer, J. A. Marcus, L. H. Schwartz, and G. P. Felcher, Phys. Rev. B2:670 (1970).

    Google Scholar 

  27. T. Yamada, N. Kunitomi, Y. Nakai, D. E. Cox, and G. Shirane, J. Phys. Soc. Jap. 28:615 (1970).

    Google Scholar 

  28. Y. Masuda, K. Asayama, S. Kobayashi, and J. Itoh, J. Phys. Soc. Jap. 19:460 (1964).

    Google Scholar 

  29. T. Kohara and K. Asayama, J. Phys. Soc. Jap. 37:401 (1974).

    Google Scholar 

  30. S. Akimoto, T. Kohara, and K. Asayama, Sol. State Comm. 16:1227 (1975).

    Google Scholar 

  31. M. Katayama and K. Asayama, J. Phys. Soc. Jap. 44:425 (1978).

    Google Scholar 

  32. T. Shinkoda, K. I. Kumagai, and K. Asayama, J. Phys. Soc. Jap. 46:1754 (1979).

    Google Scholar 

  33. D. Meneghetti and S. S. Sidhu, Phys. Rev. 105:130 (1957).

    Google Scholar 

  34. G. E. Bacon, I. W. Dunmur, J. H. Smith, and R. Street, Proc. Roy. Soc. A241:223 (1957).

    Google Scholar 

  35. T. J. Hicks, A. R. Pepper, and J. H. Smith, J. Phys. C 1:1683 (1968).

    Google Scholar 

  36. Y. Ishikawa, H. Sekine, and K. Yamada, J. Phys. Soc. Jap. 37:874 (1974).

    Google Scholar 

  37. K. J. Tauer and R. J. Weiss, Phys. Rev. 100:1223 (1955).

    Google Scholar 

  38. H. Masumoto, S. Sawaya, and M. Kikuchi, J. Jap. Inst. Metals 35:723 (1971).

    Google Scholar 

  39. M. P. Ravdel and O. I. Yevdokimova, Izv. Akad. Nauk. SSSR Metally 5:204 (1973).

    Google Scholar 

  40. J. Kübler, J. Mag. Magn. Mater. 20:107 (1980).

    Google Scholar 

  41. G. Fuster, N. E. Brener, J. Callaway, J. L. Fry, Y. Z. Zhao, and D. A. Papaconstantopoulos, Phys. Rev. B 38:423 (1988).

    Google Scholar 

  42. S. G. Kang, H. Onodera, H. Yamamoto, and H. Watanabe, J. Phys. Soc. Jap. 36:975 (1974).

    Google Scholar 

  43. Y. Nakai and N. Kunitomi, J. Phys. Soc. Jap. 39:1257 (1975).

    Google Scholar 

  44. H. Yamauchi, H. Watanabe, Y. Suzuki, and H. Saito, J. Phys. Soc. Jap. 36:971 (1974).

    Google Scholar 

  45. J. S. Kasper and R. M. Waterstrat, Phys. Rev. 109:1551 (1958).

    Google Scholar 

  46. Y. Hamaguchi and N. Kunitomi, J. Phys. Soc. Jap. 19:1849 (1964).

    Google Scholar 

  47. G. Grimvall, The Electron-Phonon Interaction in Metals (North-Holland, Amsterdam, 1981).

    Google Scholar 

  48. G. Grimvall, Thermophysical Properties of Materials (North-Holland, Amsterdam, 1986).

    Google Scholar 

  49. A. Fernández Guillermet and Weiming Huang, Trita-Mac-0396 (Royal Institute of Technology, Stockholm, Sweden, Apr. 1989).

    Google Scholar 

  50. G. L. Guthrie, S. A. Friedberg, and J. E. Goldman, Phys. Rev. 139:1200 (1965).

    Google Scholar 

  51. C. P. Gazzara, R. M. Middleton, and R. J. Weiss, Phys. Lett. 10:257 (1964).

    Google Scholar 

  52. L. D. Armstrong and H. Grayson-Smith, Can. J. Res. 28A:51 (1950).

    Google Scholar 

  53. J. C. Ho and N. E. Phillips, Phys. Lett. 10:34 (1964).

    Google Scholar 

  54. A. Fernández Guillermet and G. Grimvall, Phys. Rev. B 40:1521 (1989).

    Google Scholar 

  55. G. Grimvall and J. Rosén, Int. J. Thermophys. 4:139 (1982); J. Rosén and G. Grimvall, Phys. Rev. B 27:7199 (1983).

    Google Scholar 

  56. M. Thiessen, Int. J. Thermophys. 9:159 (1988). See also G. Grimvall, M. Thiessen, and A. Fernández Guillermet, Phys. Rev. B 36:7816 (1987).

    Google Scholar 

  57. A. Fernández Guillermet and M. Hillert, Calphad 12:337 (1988).

    Google Scholar 

  58. M. Braun, R. Kohlhaas, and O. Vollmer, Z. Angew. Phys. 25:365 (1968).

    Google Scholar 

  59. S. Sato and O. J. Kleppa, J. Chem. Thermodyn. 11:521 (1979).

    Google Scholar 

  60. B. Jansson, Computer Operated Methods for Equilibrium Calculations and Evaluation of Thermodynamic Model Parameters, Ph.D. thesis (Dept. Phys. Met., Royal Institute of Technology, Stockholm, Sweden, 1984).

    Google Scholar 

  61. F. Wüst, A. Meuthen, and R. Durrer, Forschungsarbeiten Auf dem Gebiete des Ingenieurwesens, No. 204 (Springer, Berlin, 1918).

    Google Scholar 

  62. L. D. Armstrong and H. Grayson-Smith, Can. J. Res. 27A:9 (1949).

    Google Scholar 

  63. L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams (Academic Press, New York, 1970); cf. also Ref. 57.

    Google Scholar 

  64. N. E. Phillips, Crit. Rev. Solid State Sci. 2:467 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández Guillermet, A., Huang, W. Thermodynamic analysis of manganese. Int J Thermophys 11, 949–969 (1990). https://doi.org/10.1007/BF00503586

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503586

Key words

Navigation