Advertisement

International Journal of Thermophysics

, Volume 12, Issue 6, pp 1013–1028 | Cite as

Surface-tension effects in suspended-level capillary viscometers

  • F. A. Gonçalves
  • J. Kestin
  • J. V. Sengers
Article

Abstract

The results of an experimental study of surface-tension effects in kinematic capillary viscometers of the suspended-level type are presented. These results are deduced from a comparison with measurements obtained with a special Ostwald viscometer in which surface-tension effects are negligibly small. It is shown that surface-tension effects in suspended-level viscometers are sensitive to the shape of the capillary exit. Recommendations how to minimize these effects are discussed.

Key words

capillary viscometers Ostwald viscometer surface tension Ubbelohde viscometer viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Barr, A Monograph of Viscometry (Oxford University Press, London, 1931).Google Scholar
  2. 2.
    J. F. Swindells, R. Ulman, and H. Mark, in Technique of Organic Chemistry, Vol. I. Physical Methods of Organic Chemistry, Part I, 3rd ed., A. Weissberger, ed. (Interscience, New York, 1959), p. 689.Google Scholar
  3. 3.
    J. R. van Wazer, J. W. Lyons, K. Y. Kim, and R. E. Colwell, Viscosity and Flow Measurement (Wiley, New York, 1963).Google Scholar
  4. 4.
    R. C. Hardy, NBS Viscometer Calibrating Liquids and Capillary Tube Viscometers, NBS Monograph 55 (U.S. Government Printing Office, Washington, D.C., 1962).Google Scholar
  5. 5.
    J. L. M. Poiseuille, Mem. Savants Etrangers 9:433 (1846).Google Scholar
  6. 6.
    S. Hagenbach, Pogg. Ann. 109:385 (1860).Google Scholar
  7. 7.
    E. Erk, Z. Techn. Phys. 10:452 (1929).Google Scholar
  8. 8.
    M. R. Cannon, R. E. Manning, and J. D. Bell, Anal. Chem. 32:355 (1960).Google Scholar
  9. 9.
    J. Kestin, M. Sokolov, and W. Wakeham, Appl. Sci. Res. 27:241 (1973).Google Scholar
  10. 10.
    M. Kawata, K. Kurase, A. Nagashima, and K. Yoshida, in Experimental Thermodynamics, Vol. III. The Measurement of Transport Properties of Fluids, W. A. Wakeham, A. Nagashima, and J. V. Sengers, eds. (Blackwell Scientific, Oxford, 1991).Google Scholar
  11. 11.
    G. Barr, Proc. Phys. Soc. (London) 58:575 (1946).Google Scholar
  12. 12.
    S. Peter and E. Wagner, Z. Phys. Chem. 17:199 (1958).Google Scholar
  13. 13.
    J. Einfeldt, R. Sändig, and N. Schmelzer, Exp. Techn. Phys. 27:271 (1979).Google Scholar
  14. 14.
    G. D. Wedlake, J. H. Vera, and G. A. Ratcliff, Rev. Sci. Instrum. 50:93 (1979).Google Scholar
  15. 15.
    L. Ubbelohde, Ind. Eng. Chem. 9:85 (1937).Google Scholar
  16. 16.
    L. Ubbelohde, Oel and Kohle 12:949 (1936).Google Scholar
  17. 17.
    H. Schlichting, Boundary-Layer Theory, 6th ed., translated by J. Kestin (McGraw Hill, New York, 1968).Google Scholar
  18. 18.
    J. E. Daborn, Measure. Control 18:226 (1985).Google Scholar
  19. 19.
    J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Clarendon Press, Oxford, 1982).Google Scholar
  20. 20.
    Capillary Viscometry of Newtonian Liquids, DIN 53012 (Beuth Verlag, Berlin, 1981) (in German).Google Scholar
  21. 21.
    Glass Capillary Kinematic Viscometers—Specification and Operating Instructions, ISO 3105-1976(E) (American National Standards Institute, New York, 1976, corrected 1984).Google Scholar
  22. 22.
    S. Sugden, J. Chem. Soc. 119:1483 (1921).Google Scholar
  23. 23.
    S. Hartland and R. W. Hartley, Axisymmetric Fluid-Liquid Interfaces (Elsevier, Amsterdam, 1976).Google Scholar
  24. 24.
    H. Bauer and G. Meerlander, Rheol. Acta 23:514 (1984).Google Scholar
  25. 25.
    W. A. Caw and W. D. Wylie, Br. J. Appl. Phys. 12:94 (1961).Google Scholar
  26. 26.
    J. A. Riddik and E. E. Toops, Technique of Organic Chemistry, Vol. VII. Organic Solvents, 2nd ed. (Interscience, New York, 1955).Google Scholar
  27. 27.
    J. F. Swindells, J. R. Coe, and T. B. Godfrey, J. Res. Natl. Bur. Stand. 48:1 (1952).Google Scholar
  28. 28.
    J. R. Coe and T. B. Godfrey, J. Appl. Phys. 15:625 (1944).Google Scholar
  29. 29.
    R. C. Hardy and R. L. Cottington, J. Res. Natl. Bur. Stand. 42:573 (1949).Google Scholar
  30. 30.
    G. S. Kell and E. Whalley, J. Chem. Phys. 62:3496 (1975).Google Scholar
  31. 31.
    Handbook of Chemistry and Physics (Chemical Rubber, Cleveland, OH, 1963).Google Scholar
  32. 32.
    F. A. Gonçalves and J. Kestin, Ber. Bunsenges. Phys. Chem. 81:1156 (1977).Google Scholar
  33. 33.
    F. A. Gonçalves, K. Hamano, J. V. Sengers, and J. Kestin, Int. J. Thermophys. 8:641 (1987).Google Scholar
  34. 34.
    F. A. Gonçalves, K. Hamano, and J. V. Sengers, Int. J. Thermophys. 10:845 (1989).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • F. A. Gonçalves
    • 1
  • J. Kestin
    • 2
    • 3
  • J. V. Sengers
    • 3
  1. 1.Laboratório de QuímicaAcademia MilitarLisboaPortugal
  2. 2.Division of EngineeringBrown UniversityProvidenceUSA
  3. 3.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA

Personalised recommendations