Are cholinergic mechanisms involved in morphine effects on motility?

  • K. Kuschinsky
Article

Summary

Experiments were performed to study the relevance of cholinergic mechanisms in morphine-induced effects on striatal dopamine metabolism and on motility. In rats, atropine slightly decreased the striatal homovanillic acid (HVA) concentration, but affected neither the morphine-induced rise of HVA concentration nor the catalepsy after morphine. In mice, even high doses of atropine induced only a moderate locomotor activity, compared with that observed after morphine application. Furthermore, the combination of morphine and atropine on locomotor activity seemed to be supra-additive. Although physostigmine antagonized the morphine-induced locomotor activity, the results suggest that primary effects of morphine on cholinergic mechanisms in brain are of minor importance in inducing an increase of striatal dopamine turnover and effects on motility of rats and mice.

Key words

Morphine Dopamine Turnover Cholinergic Mechanisms Motility Catalepsy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahtee, L., Kääriäinen, J.: The effect of narcotic analgesics on the homovanilic acid content of rat nucleus caudatus. Europ. J. Pharmacol. 22, 206–208 (1973)Google Scholar
  2. Ahtee, L., Kääriäinen, J., Paasonen, M. K.: Effect of nalorphine and antiparkinsonian drugs on methadone-induced rigidity; relation to homovanillic acid content of nucleus caudatus. Ann. Med. exp. Fenn. 50, 180–185 (1972)Google Scholar
  3. Andén, N.-E., Bédard, P.: Influences of cholinergic mechanisms on function and turnover of brain dopamine. J. Pharm. Pharmacol. 23, 460–462 (1971)Google Scholar
  4. Bartholini, G., Pletscher, A.: Atropine-induced changes of cerebral dopamine turnover. Experientia (Basel) 27, 1302–1303 (1971)Google Scholar
  5. Beleslin, D., Polak, R. L.: Depression by morphine and chloralose of acetylcholine release from the cat's brain. J. Physiol. (Lond.) 177, 411–419 (1965)Google Scholar
  6. Carroll, B. J., Sharp, P. T.: Monoamine mediation of the morphine-induced activation of mice. Brit. J. Pharmacol. 46, 124–139 (1972)Google Scholar
  7. Corrodi, H., Fuxe, K., Hammer, W., Sjöquist, F., Ungerstedt, U.: Oxotremorine and central monoamine neurons. Life Sci. 6, 2557–2566 (1967)Google Scholar
  8. Costall, B., Naylor, R. J.: Neuroleptic and non-neuroleptic catalepsy. Arzneimittel-Forsch. (Drug Res.) 23, 674–683 (1973)Google Scholar
  9. Fukui, K., Takagi, H.: Effect of morphine on the cerebral contents of metabolites of dopamine in normal and tolerant mice: its possible relation to analgesic action. Brit. J. Pharmacol. 44, 45–51 (1972)Google Scholar
  10. Kuschinsky, K.: Evidence that morphine increases dopamine utilization in corpora striata of rats. Experientia (Basel) (in press) (1973)Google Scholar
  11. Kuschinsky, K., Hornykiewicz, O.: Morphine catalepsy in the rat: Relation to striatal dopamine metabolism. Europ. J. Pharmacol. 19, 119–122 (1972)Google Scholar
  12. Kunschinsky, K., Hornykiewicz, O.: Effects of morphine on striatal dopamine metabolism: Possible mechanism of its opposite effect on locomotor activity in rats and mice. Europ. J. Pharmacol. (in press) (1974)Google Scholar
  13. Matthews, J. D., Labreque, G., Domino, E. F.: Effects of morphine, nalorphine and naloxone on neocortical release of acetylcholine in the rat. Psychopharmacologia (Berl.) 29, 113–120 (1973)Google Scholar
  14. Sasame, H. A., Perez-Cruet, J., Di Chiara, G., Tagliamonte, A., Tagliamonte, P., Gessa, G. L.: Evidence that methadone blocks dopamine receptors in the brain. J. Neurochem. 19, 1953–1957 (1972)Google Scholar
  15. Sharkawi, M., Goldstein, A.: Antagonism by physostigmine of the “running fit” caused by levorphanol, a morphine congener in mice. Brit. J. Pharmacol. 37, 123–128 (1969)Google Scholar
  16. Sharman, D. F.: A fluorimetric method for the estimation of 4-hydroxy-3-methoxy-phenylacetic acid (homovanillic acid) and its identification in brain tissue. Brit. J. Pharmacol. 20, 204–213 (1963)Google Scholar
  17. Smith, C. B., Sheldon, M. I., Bednarczyk, J. H., Villarreal, J. E.: Morphine-induced increases in the incorporation of 14C-tyrosine into 14C-dopamine and 14C-norepinephrine in the mouse brain: antagonism by naloxone and tolerance. J. Pharmacol. exp. Ther. 180, 547–557 (1972)Google Scholar
  18. Wand, P., Kuschinsky, K., Sontag, K.-H.: Morphine-induced muscular rigidity in rats. Europ. J. Pharmacol. 24, 189–193 (1973)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • K. Kuschinsky
    • 1
  1. 1.Abt. Biochemische PharmakologieMax-Planck-Institut für experimentelle MedizinGöttingenGermany

Personalised recommendations