Fresenius' Zeitschrift für analytische Chemie

, Volume 236, Issue 1, pp 472–498 | Cite as

Le rôle et l'utilisation de la complexation dans les applications des résines échangeuses d'ions

  • Bernard Tremillon
Originalarbeiten

Résumé

Les différents modes d'intervention de réactions de complexation, dans les applications des résines échangeuses d'ions en vue d'effectuer des séparations, sont passés en revue.

Pour les éléments métalliques, outre la mise en jeu — classique et très anciennement utilisée — de divers réactifs complexants en solution pour modifier l'affinité apparente des cations vis-à-vis d'une résine échangeuse de cations, se sont développées depuis quelques années des résines complexantes (aminodiacétate, phosphonate, etc.) dont les groupements fonctionnels jouent le rôle de réactifs complexants fixes au sein de la résine. Par ailleurs, la fixation de complexes métalliques anioniques dans les résines échangeuses d'anions constitue un autre procédé d'utilisation des complexes, abondamment étudié et illustré ces dernières années.

Pour un certain nombre de solutés moléculaires, un procédé de fixation par formation de complexes avec l'ion échangeable de la résine a été conçu, constituant une extension très intéressante des possibilités d'application des résines échangeuses d'ions à la séparation de molécules possédant ces propriétés complexantes.

Dans de nombreux cas, ces divers procédés permettent d'atteindre une haute sélectivité et de réaliser des séparations aisées et rapides, sans mettre en oeuvre les techniques chromatographiques. Pour les constituants de mélanges dont les comportements sont très voisins, leur emploi n'en devient que plus indispensable pour obtenu le meilleur rendement des techniques chromatographiques de haute efficacité.

Summary

The different ways are reviewed through which complexation reactions are involved in performing separations by means of ion-exchange resins. In the case of metal ions, the apparent affinity differences of the cation-exchanger sulphonate resins towards these cations can be varied by addition of numerous complexing agents to the solution. But furthermore, since a few years cation exchangers have been developed bearing functional groups (aminodiacetate, phosphonate etc.) which act as chelating agents fastly bound to the resin matrix. Sorption of anionic complexes onto anion exchangers (ammonium resins) provides another process in which metallic complexes are involved and which has been extensively studied for the last years.

The first part of the paper is devoted to a short survey on the physicochemical properties of the two chief chelating resins. In the case of many molecular solutes a sorption process may be conceived involving complex formation with the counter ions inside of an ion exchanger. This is a very interesting extension of the application of ion-exchange resin for molecular ligand separation, which is reviewed in the second part of the paper. In numerous cases, high selectivities are attainable by means of such processes; easy and fast separations can be sometimes carried out without need of the chromatographic methods. As for separating mixture components of very similar behaviours, their use becomes necessary so that an optimal efficiency of the chromatographic methods may be obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. 1.
    Athavale, V. T., C. V. Krishnan, and C. Ventkateswarlu: J. Indian Chem. Soc. 44, 13 (1967).Google Scholar
  2. 2.
    Barbier, Y., R. Rosset et B. Tremillon: Bull. Soc. Chim. France 1966, 3352.Google Scholar
  3. 3.
    Barraque, C., et B. Tremillon: Bull Soc. Chim. France 1965, 1674, 1680.Google Scholar
  4. 4.
    Becker, K. E., S. Lindenbaum, and G. E. Boyd: J. Phys. Chem. 70, 3834 (1966).Google Scholar
  5. 5.
    Berger, J. A., G. Meyniel et J. Petit: Bull. Soc. Chim. France 1964, 3176.Google Scholar
  6. 6.
    Bernard, H., u. F. Grass: Mikrochim. Act. 1966, 426.Google Scholar
  7. 7.
    Bhat, T. R., and T. V. Tao: Indian J. Chem. 1, 497 (1963).Google Scholar
  8. 8.
    Biechler, D. G.: Anal. Chem. 37, 1054 (1965).Google Scholar
  9. 9.
    Blasius, E., u. B. Brozio: Z. Anal. Chem. 192, 364 (1963).Google Scholar
  10. 10.
    —, and M. Laser: J. Chromatog. 11, 84 (1963).Google Scholar
  11. 11.
    Bonner, O. D., and L. L. Smith: J. Phys. Chem. 61, 326 (1957).Google Scholar
  12. 12.
    Bosholm, J.: J. Chromatog. 21, 286 (1966).Google Scholar
  13. 13.
    Bregman, J. I.: Ann. N. Y. Acad. Aci. 57, 125 (1953).Google Scholar
  14. 14.
    —, and Y. Murata: J. Am. Chem. Soc. 74, 1867 (1952).Google Scholar
  15. 15.
    Bresler, S. E.: Usp. Chim. 29, 473 (1960).Google Scholar
  16. 16.
    Childs, W. I: 135ème Congrès de l'American Chemical Society, Boston 1959.Google Scholar
  17. 17.
    Christel, R., S. Forberg, and T. Westermark: J. Inorg. Nucl. Chem. 19, 187 (1961).Google Scholar
  18. 18.
    Christofferson, K.: Anal. Chim. Acta 33, 303 (1965).Google Scholar
  19. 19.
    Churchman, J. W.: Chem. Process. 50, 52 (1962).Google Scholar
  20. 20.
    Cockerel, L., and H. F. Walton: J. Phys. Chem. 66, 75 (1962).Google Scholar
  21. 21.
    Cornaz, J. P., et H. Deuel: Experientia 10, 137 (1954).Google Scholar
  22. 22.
    —, K. Hutschneker et H. Deuel: Helv. Chim. Acta 40, 2015 (1957).Google Scholar
  23. 23.
    Craig, D. P., H. Hsia, and H. P. Gregor: Ann. N. Y. Acad. Sci. 57, 77 (1953).Google Scholar
  24. 24.
    Davies, C. W., and V. C. Patel: J. Chem. Soc. 1962, 880.Google Scholar
  25. 25.
    Despič, A. R., u. D. Kosanović: Makromol. Chem. 29, 151 (1959).Google Scholar
  26. 26.
    Dowex Chelating Resin, Technical Bulletin Code No 164–180, Dow Chem. Co. Technical Service and Development (1959).Google Scholar
  27. 27.
    Elovich, S. Y., u. L. G. Kuzmina: Ž. Neorg. Chim. 3, 1521, 1525 (1958).Google Scholar
  28. 28.
    Forberg, S.: Acta Chem. Scand. 16, 2100 (1962).Google Scholar
  29. 29.
    —, and S. Lundgren: Anal. Chem. 32, 1202 (1960).Google Scholar
  30. 30.
    Franchi, G., e L. Gorgeri: Boll. Chim. Farm. 102, 393 (1963).Google Scholar
  31. 31.
    Fujimoto, M.: Bull. Chem. Soc. Japan 34, 1342, 1537 (1961).Google Scholar
  32. 32.
    Geiso, R. C. de, L. G. Donaruma, and E. A. Tomic: Anal. Chem. 34, 845 (1962).Google Scholar
  33. 32a.
    : J. Org. Chem. 27, 1424 (1962).Google Scholar
  34. 33.
    — — —: J. Appl. Polymer Sci. 7, 1515 (1963).Google Scholar
  35. 34.
    Gregor, H. P., D. Dolar, and G. K. Hoschele: J. Am. Chem. Soc. 77, 3675 (1955).Google Scholar
  36. 35.
    —, M. Taifer, L. Citarel, and E. I. Becker: Ind. Eng. Chem. 44, 2834 (1952).Google Scholar
  37. 36.
    Grekovich, A. L., E. A. Materova u. L. V. Shevchenko: Ionnyi Obmen Leningr. Gos. Univ. 1965, 175; cf. Chem. Abstr. 65, 8086 (1966).Google Scholar
  38. 37.
    Guivetchi, N.: Thèse, Paris (1963).Google Scholar
  39. 37a.
    : J. Recherches CNRS 62, 73 (1963).Google Scholar
  40. 38.
    Hale, D. K.: Research 9, 104 (1956).Google Scholar
  41. 39.
    Heitner-Wirguin, C., and G. Markovits: J. Phys. Chem. 67, 2263 (1963).Google Scholar
  42. 40.
    —, and V. Urbach: J. Phys. Chem. 69, 3400 (1965).Google Scholar
  43. 41.
    Helfferich, F.: Ion Exchange, pp. 222–226. McGraw-Hill 1962.Google Scholar
  44. 42.
    —: J. Phys. Chem. 69, 1178 (1965).Google Scholar
  45. 43.
    —: Nature 189, 1001 (1961).Google Scholar
  46. 43a.
    : J. Am. Chem. Soc. 84, 3237 (1962).Google Scholar
  47. 44.
    Hering, R.: J. Inorg. Nucl. Chem. 24, 1339 (1962).Google Scholar
  48. 45.
    —: Z. Chem. 3, 233 (1963).Google Scholar
  49. 46.
    —: Z. Chem. 5, 113 (1965).Google Scholar
  50. 47.
    —: Z. Chem. 5, 402 (1965).Google Scholar
  51. 48.
    —, u. D. Haupt: Z. Chem. 6, 192 (1966).Google Scholar
  52. 49.
    Hill, A. G., R. Sedgley, and H. F. Walton: Anal. Chim. Acta 33, 84 (1965).Google Scholar
  53. 50.
    Hojo, N.: J. Fac. Textile Sericult., Shinshu Univ., Ser. C, No. 5 (1958).Google Scholar
  54. 51.
    Imoto, H.: Japan Analyst 10, 124, 1354 (1961).Google Scholar
  55. 52.
    Irving, H., and P. D. Wilson: J. Inorg. Nucl. Chem. 26, 2235 (1964).Google Scholar
  56. 53.
    Jenckel, E., u. H. van Lillin: Kolloid-Z. 146, 159 (1956).Google Scholar
  57. 54.
    Kamata, S., K. Inoue, and N. Ishibashi: Denki Kagaku 33, 207 (1965).Google Scholar
  58. 55.
    Kennedy, J., et coll.: J. Appl. Chem. 8, 459 (1958); 9, 32 (1959).Google Scholar
  59. 55a.
    : J. Inorg. Nucl. Chem. 22, 269 (1961).Google Scholar
  60. 55b.
    : Nature 203, 1110 (1964).Google Scholar
  61. 56.
    -, and R. V. Davies: Chem. and Ind. 1956, 378.Google Scholar
  62. 57.
    - R. V. Davies and B. K. Robinson: A.E.R.E., C/R 1956, 1896.Google Scholar
  63. 58.
    —, and V. J. Wheeler: Anal. Chim. Acta 20, 412 (1959).Google Scholar
  64. 58a.
    - Chem. and Ind. 1959, 1577.Google Scholar
  65. 59.
    Khym, J. X., and J. P. Zill: J. Am. Chem. Soc. 73, 2399 (1951); 74, 2090 (1952).Google Scholar
  66. 60.
    Klyachko, V. A.: Dokl. Akad. Nauk SSSR 81, 235 (1951).Google Scholar
  67. 61.
    Krasner, J., and J. A. Marinsky: J. Phys. Chem. 67, 2559 (1963).Google Scholar
  68. 62.
    Kuehn, G., u. R. Hering: Z. Chem. 5, 316 (1965).Google Scholar
  69. 63.
    Latterell, J. J. and H. F. Walton: Anal. Chim. Acta 32, 101 (1965).Google Scholar
  70. 64.
    Lautsch, W., et coll.: J. Polymer Sci. 8, 191 (1952).Google Scholar
  71. 64a.
    —: Naturwisschenschaften 38, 210 (1951).Google Scholar
  72. 64b.
    —: Kolloid-Z. 125, 72 (1952).Google Scholar
  73. 65.
    Lefebvre, M. J., N. S. Gonzalez et H. G. Pontis: J. Chromatog. 15, 495 (1964).Google Scholar
  74. 66.
    Leyden, D. E., and A. L. Underwood: J. Phys. Chem. 68, 2093 (1964).Google Scholar
  75. 67.
    Lock, M. V., and G. N. Richards: J. Chem. Soc. 1955, 3024.Google Scholar
  76. 68.
    Loewenschluss, H., and G. Schmuckler: Talanta 11, 1397 (1964).Google Scholar
  77. 69.
    Malarski, Z., u. L. Sobczyk: Roczniki Chem. 37, 871 (1963).Google Scholar
  78. 70.
    Marhol, M.: At. Energy Rev. 4, 63 (1966); [cf. Chem. Abstr. 66, 7413 (1966)].Google Scholar
  79. 71.
    Marinsky, J. A.: Ion Exchange, p. 101–138. M. Dekker 1966.Google Scholar
  80. 72.
    Materova, E. A., A. L. Grekovich u. N. V. Gortikova: Vestn. Leningr. Univ. Ser. Fiz. Chim. 20, Nr. 4 122 (1965); [cf. Chem. Abstr. 64, 8991 (1966)].Google Scholar
  81. 73.
    - - u. A. S. Gruglova: Ionnvi Obmen Leningr. Gos. Univ. 1965, 185; [cf. Chem. Abstr. 65, 13179 (1966)].Google Scholar
  82. 74.
    Mattano, L. A.: 135 ème Congrès de l' American Chemical Society, Boston 1959.Google Scholar
  83. 75.
    Mikes, J.: Magyar Kémiai Lapja 19, 303 (1964); [cf. Chem. Abstr. 61, 7743 (1964)].Google Scholar
  84. 76.
    Millar, J. R.: Chem. and Ind. 1957, 102.Google Scholar
  85. 77.
    Mori, M., M. Shibata, and K. Hori: Bull. Chem. Soc. Japan 34, 1809 (1961).Google Scholar
  86. 78.
    Morris, L. R., R. S. Mock, C. A. Marshall, and J. H. Howe: J. Am. Chem. Soc. 81, 377 (1959).Google Scholar
  87. 79.
    Makagawa, H. M., and F. N. Ward: Pittsburgh Conf. on Anal. Chem. and Appl. Spectr. 1960.Google Scholar
  88. 80.
    Nakamura, Y.: J. Chem. Soc. Japan, Ind. Chem. Sect. 58, 269 (1965).Google Scholar
  89. 81.
    Nelson, R., and H. F. Walton: J. Phys. Chem. 48, 406 (1944).Google Scholar
  90. 82.
    Nickless, G., and G. R. Marshall: dans Chromatographic Reviews, Vol. 6, p. 154. M. Lederer éd. Elsevier 1964.Google Scholar
  91. 83.
    Nikol'skij, B. P., N. B. Vysokoostrovskaya u. A. M. Trofimov: Radiokhim. 4, 512 (1962).Google Scholar
  92. 84.
    Noguchi, Y., and M. J. Johnson: J. Bacteriol. 82, 582 (1961).Google Scholar
  93. 85.
    Nowlin, D. D., and J. E. Powell: U. S. Atomic Energy Comm. IS-1059 (1964).Google Scholar
  94. 86.
    Okawara, M.: Yuki Gosei Kagaku Kyokai Shi 18, 229 (1960); [cf. Chem. Abstr. 54, 10623 (1960)].Google Scholar
  95. 87.
    Olsen, R. L., H. Diehl, P. F. Collins, and R. B. Ellestad: Talanta 7, 187 (1961).Google Scholar
  96. 88.
    Overberger, C. G., and A. Lebovitz: J. Am. Chem. Soc. 77, 36, 76 (1955).Google Scholar
  97. 89.
    Parrish, J. R.: Chem. and Ind. 1955, 386.Google Scholar
  98. 90.
    - Chem. and Ind. 1956, 137.Google Scholar
  99. 91.
    Pennington, L. D., and M. B. Williams: Ind. Eng. Chem. 51, 759, 1044 (1959).Google Scholar
  100. 92.
    Persoz, J., et R. Rosset: Bull. Soc. Chim. France 1964, 2197.Google Scholar
  101. 93.
    Petit, J., et R. Lumbroso: Compt. Rend. Acad. Sci. 250, 2568 (1960).Google Scholar
  102. 94.
    Petrie, G., D. Locke, and C. E. Meloan: Anal. Chem. 37, 919 (1965).Google Scholar
  103. 95.
    Püschel, R., u. E. Lassner: Z. Anorg. Allg. Chem. 326, 317 (1964).Google Scholar
  104. 96.
    Rabek, T. I., J. Lindeman, B. Brekiesz u. A. Zielinski: dans Anomalien bei Ionenaustausch-Vorgängen, S. 55. Akad. Verlag 1962.Google Scholar
  105. 97.
    Reyden, A. J. van der, u. R. L. M. van Lingen: Z. Anal. Chem. 187, 241 (1962).Google Scholar
  106. 98.
    Rieman III, W. M., et A. C. Breyer: dans Treatise on Analytical Chemistry, Part. I, Vol. 3, p. 1583. I. M. Kolthoff et P. J. Elving éd. Intersci. 1961.Google Scholar
  107. 99.
    Rosset, R.: Bull. Soc. Chim. France 1964, 1845; Thèse, Paris 1967.Google Scholar
  108. 100.
    Samuelson, O.: Ion-Exchange Separations in Analytical Chemistry, p. 77. Wiley 1963.Google Scholar
  109. 101.
    —, u. E. Sjöström: Svensk Kem. Tidskr. 64, 305 (1952).Google Scholar
  110. 102.
    Sargent, R., and W. Rieman III: J. Phys. Chem. 60, 1370 (1956).Google Scholar
  111. 102a.
    —: Anal.Chim. Acta 18, 144 (1957).Google Scholar
  112. 103.
    Schermaul, D., H. Schuetze u. K. Wetzel: Kernenergie 8, 171 (1965).Google Scholar
  113. 104.
    Schimomura, K., L. Dickson, and H. F. Walton: Anal. Chim. Acta 37, 102 (1967).Google Scholar
  114. 105.
    Schmuckler, G.: Talanta 12, 281 (1965).Google Scholar
  115. 106.
    Schwarz, A., J. A. Marinsky, and K. S. Spiegler: J. Phys. Chem. 68, 918 (1964).Google Scholar
  116. 107.
    Seidl, J., J. Stamberg, and E. Hrbkova: J. Appl. Chem. 12, 500 (1962).Google Scholar
  117. 108.
    Sides, J. L., and C. T. Kenner: Anal. Chem. 38, 707 (1966).Google Scholar
  118. 109.
    Skogseid, A.: Thèse, Trondheim (Norvège) 1946.Google Scholar
  119. 110.
    Smirnov, A. S., u. M. Blunshtein: Dokl. Akad. Nauk SSSR 70, 449 (1950).Google Scholar
  120. 111.
    Spedding, F. H., J. E. Powell, and H. J. Svec: J. Am. Chem. Soc. 77, 1393, 6125 (1955).Google Scholar
  121. 111a.
    Spedding, F. H.: J. Chim. Phys. 60, 89 (1963).Google Scholar
  122. 112.
    Stamberg, J., J. Seidl, and J. Rahm: J. Polymer Sci. 31, 15 (1958).Google Scholar
  123. 113.
    Stockes, R. H., and H. F. Walton: J. Am. Chem. Soc. 76, 3327 (1954).Google Scholar
  124. 114.
    Suryaraman, M. G., and H. F. Walton: J. Phys. Chem. 66, 78 (1962).Google Scholar
  125. 115.
    Sykora, V., u. F. Dubský: Collection Czech. Chem. Comm. 27, 350 (1962); 28, 2149 (1963).Google Scholar
  126. 116.
    Szczepaniak, W.: Chem. Anal. (Warsaw) 9, 481, 761, 1115 (1964).Google Scholar
  127. 117.
    —: Chem. Anal. (Warsaw) 10, 1199 (1965).Google Scholar
  128. 118.
    Szidon, R. D., et J. S. Fritz: Rapport IS-340 (1961).Google Scholar
  129. 119.
    Teyssie, P., et coll.: Makromol. Chem. 26, 245 (1958); 66, 133 (1963).Google Scholar
  130. 119a.
    —: J. Polymer Sci. 50, 253 (1961); 56, 462 (1962).Google Scholar
  131. 119b.
    —: Spectrochim. Acta 12, 289 (1958); 16, 689 (1960).Google Scholar
  132. 119c.
    —: J. Phys. Chem. 65, 735 (1961).Google Scholar
  133. 120.
    Thomas, C. L.: U.S. Patent 2.865.970 (1958).Google Scholar
  134. 121.
    Ti tien, H.: J. Phys. Chem. 68, 1021 (1964).Google Scholar
  135. 122.
    B. Tremillon: Les Séparations par les Résines Echangeuses d'Ions, p. 78–119. Gauthier-Villars 1965.Google Scholar
  136. 123.
    Turse, R., and W. M. Rieman III: Anal. Chim. Acta 24, 202 (1961).Google Scholar
  137. 124.
    — —: J. Am. Chem. Soc. 65, 1821 (1961).Google Scholar
  138. 125.
    Varon, A., and W. M. Rieman III: J. Phys. Chem. 68, 2716 (1964).Google Scholar
  139. 126.
    Vulliez-Sermet, P.: Thèse, Toulouse 1967.Google Scholar
  140. 127.
    Walsh, E. N., T. M. Beck, and A. D. F. Toy: J. Am. Chem. Soc. 78, 4455 (1956).Google Scholar
  141. 128.
    Walton, H. F.: J. Phys. Chem. 47, 371 (1943).Google Scholar
  142. 129.
    -, et J. J. Latterell: dans Analytical Chemistry 1962, C. R. Intern. Symp. Birmingham Univ., P. W. West, A. M. G. Macdonald et T. S. West éd., Elsevier 1963, p. 356.Google Scholar
  143. 130.
    Willigen, J. van, et R. C. Schonebaum: Rec. Trav. Chim. 85, 35 (1966).Google Scholar
  144. 131.
    Winget, J. O.: U.S. Bureau Mines, Rept. Invest. 6510 (1964).Google Scholar
  145. 132.
    Woermann, D., K. F. Bonhoeffer u. F. Helferich: Z. Phys. Chem., N F. 8, 265 (1956).Google Scholar
  146. 133.
    Ziegler, M.: Angew. Chem. 71, 283 (1959).Google Scholar
  147. 134.
    Zill, L. P., J. X. Khym, and G. M. Cheniae: J. Am. Chem. Soc. 75, 1339 (1953).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Bernard Tremillon
    • 1
  1. 1.Laboratoire de Recherches de Chimie Analytique de la Faculté des Sciences ENSCPParis 5eFrance

Personalised recommendations