International Journal of Thermophysics

, Volume 9, Issue 5, pp 703–712 | Cite as

Cloud-point measurements for the mixture tertiary butyl alcohol, secondary butyl alcohol, and water

  • C. M. Sorensen


Cloud point measurements are presented for the ternary mixture of tertiary butyl alcohol (tBA), secondary butyl alcohol (sBA), and water. At a zero tBA concentration the system displays a large immiscibility gap, but with an increasing proportion of tBA, the gap pinches off at a critical double point to a closed loop and a lower gap, then the loop shrinks and disappears at a hypercritical point, leaving only the lower gap. This behavior is shown to be semiquantitatively similar to the behavior of sBA/water with increasing pressure. If a pseudobinary assumption is made, the shape of the cloud-point curves can be shown to be qualitatively similar to coexistence curves in binary mixtures, with an exponent of β ≃ 1/3. Near the critical double point this exponents appears to double.

Key words

aqueous systems alcohol cloud points phase equilibria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. S. Rowlinson and F. L. Swinton, Liquids and Liquid Mixtures, 3rd ed. (Butterworths, London 1982).Google Scholar
  2. 2.
    A. W. Francis, Liquid-Liquid Equilibrium (Wiley, New York, 1963).Google Scholar
  3. 3.
    T. Moriyoshi, S. Kaneshina, K. Aihara, and K. Yabumoto, J. Chem. Termodyn. 7:537 (1975); W. Dolgolenko, Z. Phys. K. Chem. 62:499 (1908).Google Scholar
  4. 4.
    J. D. Hirschfelder, D. Stevenson, and H. Eyring, J. Chem. Phys. 5:896 (1937).Google Scholar
  5. 5.
    For an excellent heuristic description of these phenomena and photographs of the apparatus and work described in this paper, see J. S. Walker and C. A. Vause, Sci. Am. 256:98 (1987).Google Scholar
  6. 6.
    J. C. Wheeler, J. Chem. Phys. 62:433 (1975).Google Scholar
  7. 7.
    G. R. Anderson and J. C. Wheeler, J. Chem. Phys. 69:2082, 3403 (1978).Google Scholar
  8. 8.
    J. C. Wheeler and G. R. Anderson, J. Chem. Phys. 73:5778 (1980).Google Scholar
  9. 9.
    J. S. Walker and C. A. Vause, Phys. Lett. A 79:421 (1980); C. A. Vause and J. S. Walker, Phys. Lett. A 90:419 (1982); J. S. Walker and C. A. Vause, J. Chem. Phys. 79:2660 (1983).Google Scholar
  10. 10.
    R. E. Goldstein and J. S. Walker, J. Chem. Phys. 78:1492 (1983).Google Scholar
  11. 11.
    R. E. Goldstein, J. Chem. Phys. 79:4439 (1983).Google Scholar
  12. 12.
    D. A. Huckaby and A. Bellemans, J. Chem. Phys. 81:3691 (1984).Google Scholar
  13. 13.
    R. E. Goldstein, J. Chem. Phys. 83:1246 (1985).Google Scholar
  14. 14.
    D. J. Pine, N. Easwar, J. V. Maher, and W. I. Goldburg, Phys. Rev. A 29:308 (1984).Google Scholar
  15. 15.
    C. W. Euliss and C. M. Sorensen, J. Chem. Phys. 80:4767 (1984).Google Scholar
  16. 16.
    T. M. Bender and R. Pecora, J. Phys. Chem. 90:1700 (1985).Google Scholar
  17. 17.
    C. M. Sorensen, J. Chem. Phys. 79:1455 (1983).Google Scholar
  18. 18.
    F. H. Sillinger, Science 209:451 (1980).Google Scholar
  19. 19.
    B. L. Halfpap and C. M. Sorensen, J. Chem. Phys. 77:466 (1982).Google Scholar
  20. 20.
    R. J. Speedy, J. Phys. Chem. 88:3364 (1984).Google Scholar
  21. 21.
    A. Kumar, H. R. Krishnamurthy, and E. S. R. Gopal, Phys. Rep. 98:57 (1983), and references therein.Google Scholar
  22. 22.
    J. V. Sengers and J. M. H. Level Sengers, in Progress in Liquid Physics, C. A. Croxton, ed. (Wiley, New York, 1978).Google Scholar
  23. 23.
    R. B. Griffiths and J. C. Wheeler, Phys. Rev. A 2:1047 (1970).Google Scholar
  24. 24.
    A. Deerenberg, J. A. Schouten, and N. J. Trappeniers, Physica 103:183 (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • C. M. Sorensen
    • 1
  1. 1.Department of PhysicsKansas State UniversityManhattanUSA

Personalised recommendations