Skip to main content
Log in

Modeling the thermodynamic properties of sodium chloride in steam through extended corresponding states

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Recent precise data on anomalous behavior of apparent molar properties of electrolyte solutions in near-critical steam have raised important questions as to how the thermodynamic properties of these systems should be described. Current Gibbs free energy models fail for highly compressible solutions. Here, a Helmholtz free energy formulation is presented as a first step in modeling compressible dilute aqueous electrolyte solutions. Comparisons are made with the known critical line, coexistence curves, apparent molar volumes, and heat capacities of NaCl in steam, and conclusions presented on improving the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Busey, H. F. Holmes, and R. E. Mesmer, J. Chem. Thermodyn. 16:3389 (1984).

    Google Scholar 

  2. J. M. Simonson, R. H. Busey, and R. E. Mesmer, J. Phys. Chem. Lett. 89:557 (1985).

    Google Scholar 

  3. D. Smith-Magowan and R. H. Wood, J. Chem. Thermodyn. 3:1047 (1981).

    Google Scholar 

  4. D. E. White, R. H. Wood, and D. R. Biggerstaff, J. Chem. Therm. 20:159 (1988).

    Google Scholar 

  5. R. F. Chang, G. Morrison, and J. M. H. Levelt Sengers, J. Phys. Chem. 88:3389 (1984).

    Google Scholar 

  6. K. S. Pitzer, J. C. Peiper, and R. H. Busey, J. Phys. Chem. Ref. Data 13:1 (1984).

    Google Scholar 

  7. J. M. H. Levelt Sengers, C. M. Everhart, G. Morrison, and R. F. Chang, Proc. 10th Int. Conf. Prop. Steam (MIR, Moscow, 1984), pp. 277–288.

    Google Scholar 

  8. J. M. H. Levelt Sengers, C. M. Everhart, G. Morrison, and K. S. Pitzer, Chem. Eng. Comm. 47:315 (1986).

    Google Scholar 

  9. J. D. van der Waals, Arch. Neerl. 24:1 (1890); Z. Phys. Chem. 5:133 (1891).

    Google Scholar 

  10. D. J. Bradley and K. S. Pitzer, J. Phys. Chem. 83:1599 (1979).

    Google Scholar 

  11. M. Uematsu and E. U. Franck, J. Phys. Chem. Ref. Data 9:1291 (1980).

    Google Scholar 

  12. K. S. Pitzer, Physics and Chemistry of Electrons and Ions in Condensed Matter (Reidel, Dordrecht, 1984), pp. 165–196.

    Google Scholar 

  13. A. S. Quist and W. M. Marshall, J. Phys. Chem. 72:684 (1968).

    Google Scholar 

  14. J. M. H. Levelt Sengers, Proc. Int. Conf. Thermodyn. Aqueous Syst. Indust. Appl., Airlie House, Warrenton, Va, May 1987 (Hemisphere, Washington, D.C., 1988, in press).

    Google Scholar 

  15. G. Morrison, J. Soln. Chem. 17:887 (1988).

    Google Scholar 

  16. J. M. H. Levelt Sengers and S. C. Greer, Int. J. Heat Mass Transfer 15:1865 (1972).

    Google Scholar 

  17. J. M. H. Levelt Sengers, B. Kamgar-Parsi, F. W. Balfour, and J. V. Sengers, J. Phys. Chem. Ref. Data 12:1 (1983).

    Google Scholar 

  18. P. C. Albright, Z. Y. Chen, and J. V. Sengers, Phys. Rev. B 36:877 (1987).

    Google Scholar 

  19. J. L. Bischoff, R. J. Rosenbauer, and K. S. Pitzer, Geochim. Cosmochim. Acta 50:1437 (1986).

    Google Scholar 

  20. K. S. Pitzer, J. L. Bischoff, and R. J. Rosenbauer, Chem. Phys. Lett. 134:60 (1987).

    Google Scholar 

  21. K. S. Pitzer, J. Phys. Chem. 90:1502 (1986).

    Google Scholar 

  22. D. R. Biggerstaff and R. H. Wood, J. Phys. Chem. 92:1994 (1988).

    Google Scholar 

  23. R. H. Wood and J. R. Quint, J. Chem. Thermodyn. 14:1069 (1982).

    Google Scholar 

  24. M. Patron and Z. Y. Chen, Personal communication (1988).

  25. K. S. Pitzer and J. C. Tanger IV, Int. J. Thermophys. 9:635 (1988).

    Google Scholar 

  26. L. Haar, J. S. Gallagher, and G. S. Kell, NBS/NRC Steam Tables (Hemisphere, Washington, D.C., 1984).

  27. J. M. H. Levelt Sengers, R. F. Chang, and G. Morrison, Equations of State, Theory and Applications, ACS Symposium Series 300 (1986), Chap. 5, see pp. 125–129.

  28. I.-M. Chou, Geochim. Cosmochim. Acta 51:1965 (1987).

    Google Scholar 

  29. D. L. Hall, S. M. Sterner, and R. J. Bodnar, EOS 68:450 (1987).

    Google Scholar 

  30. K. S. Pitzer, Chem. Phys. Lett. 105:484 (1984).

    Google Scholar 

  31. W. M. Marshall and E. V. Jones, J. Inorg. Nucl. Chem. 36:2313 (1974).

    Google Scholar 

  32. A. Ölander and H. Liander, Acta Chem. Scand. 4:1437 (1950).

    Google Scholar 

  33. I. Kh. Khaibullin and N. M. Borisov, Russ. J. Phys. Chem. 30:361 (1965).

    Google Scholar 

  34. S. Sourirajan and G. C. Kennedy, Am. J. Sci. 260:115 (1962).

    Google Scholar 

  35. J. S. Rowlinson and I. D. Watson, Chem. Eng. Sci. 24:1565 (1969).

    Google Scholar 

  36. J. W. Leach, P. S. Chappelear, and T. W. Leland, A.I.Ch.I J. 14:568 (1968).

    Google Scholar 

  37. J. F. Ely and J. M. Hanley, A Computer Program for the Prediction of Viscosity and Thermal Conductivity in Hydrocarbon Mixtures, NBS Tech. Note 1039 (1981).

  38. J. S. Gallagher, D. Linsky, G. Morrison, and J. M. H. Levelt Sengers, Thermodynamic Properties of a Geothermal Working Fluid; 90% Isobutane-10% Isopentane, NBS Tech. Note 1234 (1987).

  39. J. M. H. Levelt Sengers, J. Straub, K. Watanabe, and P. G. Hill, J. Phys. Chem. Ref. Data 14:193 (1985).

    Google Scholar 

  40. I. Kh. Khaibullin and N. M. Borisov, Teplofiz. Vysok. Temp. 4:518 (1966).

    Google Scholar 

  41. J. M. H. Levelt Sengers, Fluid Phase Equil. 30:31 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallagher, J.S., Levelt Sengers, J.M.H. Modeling the thermodynamic properties of sodium chloride in steam through extended corresponding states. Int J Thermophys 9, 649–661 (1988). https://doi.org/10.1007/BF00503233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00503233

Key words

Navigation