Advertisement

International Journal of Thermophysics

, Volume 9, Issue 4, pp 559–566 | Cite as

A generalized equation for surface tension from the triple point to the critical point

  • G. R. Somayajulu
Article

Abstract

A three-parameter generalized equation is proposed for surface tension from the triple point to the critical point. This equation not only fits the data well but also is good for interpolation between the normal boiling point and the critical point. This equation is also good for extrapolation to the triple point. This equation has been tested using the surface tension of water from the triple point to the critical point. The constants of this equation obtained using orthobaric surface tensions are given for a number of compounds. The isobaric surface tensions determined at a pressure of 1 atm do not differ significantly from the orthobaric surface tensions. Such data also have been used in obtaining equations from the triple to the critical point.

Key words

alcohols alkanes isobaric surface tension orthobaric surface tension water 

Nomenclature

Tc

Critical temperature, K

Tt

Triple point, K

Tm

Melting point, K

Tr

Reduced temperature, K

X

(Tc-T)/Tc

γ

Surface tension, dyne · cm−1;10−3N · m−1

γm

Surface tension at the melting point

γf

Surface tension at Tr=0.9

γt

Surface tension at the triple point

Relative deviation

100[γobsdγcalcd]/γobsd

Standard deviation

[∑(γobsdγcalcd)2/(No. points—No. parameters)]0.5

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Van der Waals, Z. Phys. Chem. 13:657 (1894).Google Scholar
  2. 2.
    A. Ferguson and S. J. Kennedy, Trans. Faraday Soc. 32:1474 (1936).Google Scholar
  3. 3.
    N. B. Vargaftik, L. D. Voljak, and B. N. Volkov, Proc. 8th Int. Conf. Prop. Steam Water (Giens, France, 1974), Vol. II, p. 1075.Google Scholar
  4. 4.
    N. B. Vargaftik, B. N. Volkov, and L. D. Voljak, J. Phys. Chem. Ref. Data 12:817 (1983).Google Scholar
  5. 5.
    J. Straub, N. Rosner, and U. Grigull, Proc. 8th Int. Conf. Prop. Steam Water (Giens, France, 1974), Vol. II, p. 1085.Google Scholar
  6. 6.
    J. J. Jasper, J. Phys. Chem. Ref. Data 1:841 (1972).Google Scholar
  7. 7.
    A. P. Kudchadker, G. H. Alani, and B. J. Zwolinski, Chem. Rev. 68:659 (1968).Google Scholar
  8. 8.
    A. L. Lydersen, Estimation of Critical Properties of Organic Compounds (University of Wisconsin, Madison, 1955), Coll. Eng., Eng. Expt. Stn. Rep. 3.Google Scholar
  9. 9.
    D. Ambrose, B. E. Broderick, and R. Townsend, J. Appl. Chem. Biotechnol. 24:359 (1974).Google Scholar
  10. 10.
    D. Ambrose, NPL Report Chem. 92 (National Physical Laboratory, Teddington, Middlesex, UK, 1978).Google Scholar
  11. 11.
    L. Riedel, Chem. Ing. Tech. 24:353 (1952).Google Scholar
  12. 12.
    L. Riedel, Chem. Ing. Tech. 35:433 (1963).Google Scholar
  13. 13.
    Yu. V. Efremov, Russ. J. Phys. Chem. 40:667 (1966).Google Scholar
  14. 14.
    J. J. Jasper, E. R. Kerr, and F. Gregorich, J. Am. Chem. Soc. 75:5252 (1953).Google Scholar
  15. 15.
    J. J. Jasper and E. V. Kring, J. Phys. Chem. 59:1019 (1955).Google Scholar
  16. 16.
    N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, 2nd ed. (John Wiley, New York, 1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • G. R. Somayajulu
    • 1
  1. 1.Thermodynamics Research CenterTexas A & M UniversityCollege StationUSA

Personalised recommendations