International Journal of Thermophysics

, Volume 9, Issue 4, pp 525–534 | Cite as

Hydrogen component fugacity in binary mixtures with carbon monoxide: Temperature dependence

  • T. J. Bruno
  • J. A. Schroeder


The fugacity coefficients of hydrogen in binary mixtures with carbon monoxide were measured using a physical equilibrium technique. This technique involves the use of an experimental chamber which is divided into two regions by a semipermeable membrane through which hydrogen, but not carbon monoxide, can penetrate. Measurement of the gas pressures inside and outside of the membrane allows a direct measurement of the hydrogen component fugacity at a given temperature and binary mixture mole fraction. In this paper, results are reported at 130, 160, and 190°C. In each case, the total pressure of the mixture was maintained at a nominal value of 3.39 MPa. The general qualitative features of the data are discussed, and comparisons are made with predictions obtained from the Redlich-Kwong, Peng-Robinson-Soave, and extended corresponding-state models.

Key words

carbon monoxide fugacity hydrogen mixtures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Y. Cheh, Proc. 6th Symp. Thermophys. Prop. (ASME, New York, 1963), p. 256.Google Scholar
  2. 2.
    T. J. Bruno, J. Res. Natl. Bur. Stand. (U.S.) 90(2):127 (1985).Google Scholar
  3. 3.
    T. J. Bruno, G. L. Hume, and J. F. Ely, Int. J. Thermophys. 7:1033 (1986).Google Scholar
  4. 4.
    T. J. Bruno and G. L. Hume, Int. J. Thermophys. 7:1053 (1986).Google Scholar
  5. 5.
    T. J. Bruno, Int. J. Thermophys. 8:205 (1987).Google Scholar
  6. 6.
    T. J. Bruno and J. A. Schroeder, Int. J. Thermophys. 8:437 (1987).Google Scholar
  7. 7.
    S. I. Sandler, Chemical and Engineering Thermodynamics (John Wiley and Sons, New York, 1977).Google Scholar
  8. 8.
    B. G. Kyle, Chemical and Process Thermodynamics (Prentice-Hall, Englewood Cliffs, N.J., 1984).Google Scholar
  9. 9.
    J. M. Prausnitz, Molecular Thermodynamics of Fluid Phase Equilibria (Prentice-Hall, Englewood Cliffs, N.J., 1964).Google Scholar
  10. 10.
    T. J. Bruno, J. Chromatogr. Sci. 23:325 (1985).Google Scholar
  11. 11.
    T. J. Bruno and J. G. Shepherd, Anal. Chem. 58:671 (1986).Google Scholar
  12. 12.
    T. J. Bruno and P. D. N. Svoronos, Basic Tables for Chemical Analysis, National Bureau of Standards (U.S.) Technical Note 1096 (1986).Google Scholar
  13. 13.
    T. J. Bruno and P. D. N. Svoronos, Handbook of Basic Tables for Chemical Analysis (CRC Press, Boca Raton, Fla., 1988) (in press).Google Scholar
  14. 14.
    T. J. Bruno, Anal. Chem. 58:1596 (1986).Google Scholar
  15. 15.
    D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fund., 15:59 (1976).Google Scholar
  16. 16.
    J. M. Smith and H. C. VanNess, Introduction to Chemical Engineering Thermodynamics (McGraw-Hill, New York, 1975).Google Scholar
  17. 17.
    J. F. Ely, Proc. 63rd. Gas Process. Assoc. Convention (1984), p. 9.Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • T. J. Bruno
    • 1
  • J. A. Schroeder
    • 1
  1. 1.Thermophysics DivisionNational Institute of Standards and Technology (formerly National Bureau of Standards)BoulderUSA

Personalised recommendations