Skip to main content
Log in

Hydrogen component fugacities in binary mixtures with methane and propane

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The fugacity coefficients of hydrogen in binary mixtures with methane and propane were measured using a physical equilibrium technique. This technique involves the use of an experimental chamber which is divided into two regions by a semipermeable membrane. Hydrogen can penetrate and pass through the membrane, while the other component (in this case, methane or propane) cannot. At equilibrium, pure hydrogen will permeate into one “compartment” of the chamber, while the binary mixture occupies the other compartment. Thus, the pressure of pure hydrogen on one side approaches the partial pressure of hydrogen in the mixture on the other side of the membrane. This allows a direct measurement of the hydrogen component fugacity at a given mixture mole fraction. In this study, results are reported for measurements made on the hydrogen+propane binary at 80°C (353 K) and 130°C (403 K) and the hydrogen+methane binary at 80°C (353 K). All measurements were performed with a total mixture pressure of 3.45 MPa. The experimental results are compared with predictions from the Redlich-Kwong, Peng-Robinson, and extended corresponding-states models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Lewis, Proc. Am. Acad. 37:49 (1901).

    Google Scholar 

  2. G. N. Lewis, Z. Phys. Chem. 38:205 (1901).

    Google Scholar 

  3. G. N. Lewis and M. Randall, Thermodynamics (McGraw-Hill, New York, 1961).

    Google Scholar 

  4. S. I. Sandler, Chemical and Engineering Thermodynamics (John Wiley & Sons, New York, 1977).

    Google Scholar 

  5. B. G. Kyle, Chemical and Process Thermodynamics (Prentice Hall, Englewood Cliffs, N.J., 1984).

    Google Scholar 

  6. J. M. Prausnitz, Molecular Thermodynamics of Fluid Phase Equilibria (Prentice Hall, Englewood Cliffs, N.J., 1969).

    Google Scholar 

  7. K. Denbigh, The Principles of Chemical Equilibrium (Cambridge University Press, New York, 1971).

    Google Scholar 

  8. J. M. Prausnitz, AIChE J. 5:3 (1969).

    Google Scholar 

  9. H. Y. Cheh, Proceedings of the 6th Symposium on Thermophysical Properties, P. E. Liley, ed. (Am. Soc. Mech. Eng., New York, 1973), p. 256.

    Google Scholar 

  10. D. P. Smith, Hydrogen in Metals (University of Chicago Press, Chicago, 1948).

    Google Scholar 

  11. E. M. Wise, Palladium (Academic Press, New York, 1968).

    Google Scholar 

  12. T. J. Bruno, J. Res. Natl. Bur. Std. 90(2):127 (1985).

    Google Scholar 

  13. T. J. Bruno, J. Chromatogr. Sci. 23(7):325 (1985).

    Google Scholar 

  14. T. J. Bruno and G. L. Hume, J. Res. Natl. Bur. Std. 90(3):225 (1985).

    Google Scholar 

  15. ASME Boiler and Pressure Vessel Code, Sect. VIII: Unfired Pressure Vessels (American Society of Mechanical Engineers, New York, 1965).

  16. R. L. Powell, W. J. Hall, C. H. Hyink, L. L. Sparks, G. W. Burns, M. G. Scroger, and H. H. Plumb, Thermocouple Reference Tables Based on the IPTS-68, National Bureau of Standards, Monograph 125 (1975).

  17. T. J. Bruno, D. E. Martire, M. W. P. Harbison, A. Nikolić, and C. F. Hammer, J. Phys. Chem. 87:2425 (1983).

    Google Scholar 

  18. E. Heftmann, Chromatography: A Laboratory Handbook of Chromatographic and Electrophoretic Methods, 3rd ed. (Van Nostrand Reinhold, New York, 1975).

    Google Scholar 

  19. H. M. McNair and E. J. Bonnelli, Basic Gas Chromatography (Varian Aerograph, 1969).

  20. C. J. Cowper and A. J. DeRose, The Analysis of Gases by Chromatography (Pergamon Press, Oxford, 1983).

    Google Scholar 

  21. P. G. Jeffery and P. J. Kiping, Gas Analysis by Gas Chromatography (Pergamon Press, Oxford, 1972).

    Google Scholar 

  22. D.-Y. Peng and D. B. Robinson, Ind. Eng. Chem. Fund. 15:59 (1976).

    Google Scholar 

  23. R. T. Jacobsen and R. J. Stewart, J. Phys. Chem. Ref. Data 2:757 (1973).

    Google Scholar 

  24. F. Antezana and H. Y. Cheh, Ind. Eng. Chem. Fund. 14:224 (1975).

    Google Scholar 

  25. T. J. Bruno and G. L. Hume, Int. J. Thermophys. 7:1053 (1986).

    Google Scholar 

  26. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1976), p. 630.

    Google Scholar 

  27. R. A. Mentzer, R. A. Greenkorn, and K.-C. Chao, Ind. Eng. Chem. Process Des. Dev. 20:240 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, T.J., Hume, G.L. & Ely, J.F. Hydrogen component fugacities in binary mixtures with methane and propane. Int J Thermophys 7, 1033–1051 (1986). https://doi.org/10.1007/BF00502376

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502376

Key words

Navigation