Skip to main content
Log in

The thermal conductivity of n-hexadecane+ ethanol and n-decane+butanol mixtures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

New absolute measurements, by the transient hot-wire technique, of the thermal conductivity of n-hexadecane and binary mixtures of n-hexadecane with ethanol and n-decane with butanol are presented. The temperature range examined was 295–345 K and the pressure atmospheric. The concentrations of the mixtures studied were 92% (by weight) of n-hexadecane and 30 and 70% (by weight) of n-decane. The overall uncertainty in the reported thermal conductivity data is estimated to be ±0.5%, an estimate confirmed by the measurement of the thermal conductivity of water. A recently extended semiempirical scheme for the prediction of the thermal conductivity of mixtures from the pure components is used to correlate and predict the thermal conductivity of these mixtures, as a function of both composition and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pucci, Proceedings of 4th IUPAC Workshop on Vapor-Liquid Equilibrium in 1-Alkanol+n-Alkane Mixtures (Thessaloniki, Greece, 1988), p. B1.

    Google Scholar 

  2. M. J. Assael and E. Charitidou, Int. J. Thermophys. 11:1001 (1990).

    Google Scholar 

  3. E. Charitidou, M. Dix, M. J. Assael, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 8:511 (1987).

    Google Scholar 

  4. M. J. Assael, E. Charitidou, G. P. Georgiadis, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 92:627 (1988).

    Google Scholar 

  5. M. J. Assael, E. Charitidou, and C. A. Nieto de Castro, Int. J. Thermophys. 9:813 (1988).

    Google Scholar 

  6. M. J. Assael, E. Charitidou, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 8:663 (1987).

    Google Scholar 

  7. Y. Wada, Y. Nagasaka, and A. Nagashima, Int. J. Thermophys. 6:251 (1985).

    Google Scholar 

  8. R. W. Powell and H. Groot, Int. J. Heat Mass Transfer 15:360 (1972).

    Google Scholar 

  9. G. F. Bogatov, Yu. L. Rastorguev, and B. A. Grigoriev, Khim. Tekhn. Topl. Masel 9:31 (1969).

    Google Scholar 

  10. M. H. Gollis, L. I. Belenyessy, B. J. Gudzinowicz, S. D. Koch, J. D. Smith, and R. J. Wineman, J. Chem. Eng. Data 7:311 (1962).

    Google Scholar 

  11. G. Kh. Mukhamedzyanov, A. G. Usmanov, and A. A. Tarzimanov, Izv. vyssh. usheb. Zaveb. Neft'i Gaz. 6:75 (1963).

    Google Scholar 

  12. B. C. Sakiadis and J. Coates, J. Am. Inst. Chem. Eng. 3:121 (1957).

    Google Scholar 

  13. M. J. Assael, J. H. Dymond, and V. Tselekidou, Int. J. Thermophys. 11:863 (1990).

    Google Scholar 

  14. J. H. Dymond, Chem. Rev. 14:317 (1985).

    Google Scholar 

  15. M. J. Assael, E. Charitidou, and W. A. Wakeham, Int. J. Thermophys. 10:793 (1989).

    Google Scholar 

  16. M. J. Assael, E. Charitidou, S. Avgoustiniatos, and W. A. Wakeham, Int. J. Thermophys. 10:1127 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assael, M.J., Charitidou, E. & Karagiannidis, L. The thermal conductivity of n-hexadecane+ ethanol and n-decane+butanol mixtures. Int J Thermophys 12, 491–500 (1991). https://doi.org/10.1007/BF00502364

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502364

Key words

Navigation