Biochemical Genetics

, Volume 17, Issue 7–8, pp 665–682 | Cite as

Genetic variation in mouse salivary amylase rate of synthesis

  • J. Peter Hjorth
Article

Abstract

Heterozygotes from matings of the mouse strains YBR/Cv and C3H/As have about 3 times more YBR-amylase than C3H-amylase in the saliva. The determinant for this quantitative effect is located on linkage group XVI close to or within the structural gene for salivary amylase. The quantitative effect is the result of an increase in the rate of synthesis of YBR-amylase, and the determinant is cis acting. Studies of other mouse strains suggest that regulatory genetic elements may modulate salivary amylase production.

Key words

Mus musculus salivary amylase genetic variation rate of synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breen, G. A. M., Lusis, A. J., and Paigen, K. (1977). Linkage of genetic determinants for mouse β-galactosidase electrophoresis and activity. Genetics 8573.Google Scholar
  2. Chapman, V. M., Paigen, K., Siracusa, L., and Wormack, J. (1979). Biochemical variation: mouse. In Altman, P. L., and Katz, D. D. (ed.), Inbred and Genetically Defined Strains of Laboratory Animals Federation of American Societies for Experimental Biology, Bethesda, Md., pp. 77–95.Google Scholar
  3. Chovnick, A., Gelbart, W., McCarron, M., Osmond, B., Candido, E. P. M., and Baillie, D. L. (1976). Organization of the rosy locus in Drosophila melanogaster: Evidence for a control element adjacent to the xanthine dehydrogenase structural element. Genetics 84233.Google Scholar
  4. Clarke, J. T. (1964). Simplified “disc” (polyacrylamide gel) electrophoresis. Ann. N.Y. Acad. Sci. 121428.Google Scholar
  5. Dahlqvist, A. (1962). A method for determination of amylase in intestinal content. Scan. J. Clin. Lab. Invest. 14145.Google Scholar
  6. Doyle, D., and Schimke, R. T. (1969). The genetic and developmental regulation of hepatic δ-aminolevulinate dehydratase in mice. J. Biol. Chem. 2445449.Google Scholar
  7. Eicher, E., Wormack, J., Reynolds, S., and Southard, J. (1976). Personal communication. Mouse News Letter 5441.Google Scholar
  8. Hanford, W. C., and Arfin, S. M. (1977). Genetic differences in the rate of histidase synthesis in inbred mice. J. Biol. Chem. 2526695.Google Scholar
  9. Hjorth, J. P., Meisler, M., and Nielsen, J. T. (1979a). Genetic variation in the amount of salivary amylase in the bank vole, Clethrionomys glareola. Genetics (in press).Google Scholar
  10. Hjorth, J. P., Lusis, A. J., and Nielsen, J. T. (1979b). Multiple structural genes for mouse amylases. Biochem. Genet. (in press).Google Scholar
  11. Huisman, T. H. J., and Schroeder, W. A. (1971). New Aspects of the Structure, Function, and Synthesis of Hemoglobins Butterworth, London.Google Scholar
  12. Kitchen, H., and Boyer, S. (ed.) (1974). Hemoglobins: Comparative molecular biology models for the study of disease. Part I. The hemoglobin genes. Ann. N.Y. Acad. Sci. 241:7.Google Scholar
  13. Laemmli, U. K. (1970). Cleavage and structural proteins during the assembly of the head of bacteriophage T4. Nature 227680.Google Scholar
  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193265.Google Scholar
  15. Nielsen, J. T. (1969). Genetic studies of the amylase isoenzymes of the bank vole, Clethrionomys glareola. Hereditas 61400.Google Scholar
  16. Nielsen, J. T. (1974). Pancreatic amylase polymorphism in the house mouse. A model involving several loci. Hereditas 78309.Google Scholar
  17. Nielsen, J. T. (1977a). Variation in the number of genes coding for salivary amylase in the bank vole, Clethrionomys glareola. Genetics 85155.Google Scholar
  18. Nielsen, J. T. (1977b). Polymorphism for the number of genes coding for salivary amylase in the bank vole Clethrionomys glareola. In Christiansen, F. B., and Fenchel, T. M. (eds.), Measuring Selection in Natural Populations Springer-Verlag, Berlin, pp. 275–290.Google Scholar
  19. Nielsen, J. T., and Sick, K. (1975). Genetic polymorphism of amylase isoenzymes in feral populations of the house mouse. Hereditas 79279.Google Scholar
  20. Owerbach, D., and Hjorth, J. P. (1980). Inheritance of a parotid secretory protein in mouse and its use in determining salivary amylase quantitative variants (in press).Google Scholar
  21. Paigen, K., Swank, R. T., Tomino, S., and Ganschow, R. E. (1975). The molecular genetics of mammalian glucuronidase. J. Cell. Physiol. 85379.Google Scholar
  22. Schramm, M., and Loyter, A. (1966). Purification of α-amylase by precipitation of amylase-glycogen complexes. Methods Enzymol. 8533.Google Scholar
  23. Sick, K. (1965). Haemoglobin polymorphism of cod in the Baltic and the Danish belt sea. Hereditas 5419.Google Scholar
  24. Sick, K., and Nielsen, J. T. (1964). Genetics of amylase isozymes in the mouse. Hereditas 51291.Google Scholar
  25. Taylor, B. A. (1976). Linkage of the cadmium resistance locus to loci on mouse chromosome 12. J. Hered. 67389.Google Scholar
  26. Williamson, A. R. (1976). The biological origin of antibody diversity. Ann. Rev. Biochem. 45467.Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • J. Peter Hjorth
    • 1
  1. 1.Institute of Ecology and GeneticsUniversity of AarhusAarhus CDenmark

Personalised recommendations