Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 291, Issue 4, pp 319–333 | Cite as

The different fatty acid composition of lecithins in the sacroplasmic reticulum vesicles and the membranes of adrenal chromaffin granules

  • H. Balzer
  • A. Rauf Khan


Calcium transporting membranes of sarcoplasmic reticulum (SR) and amine transporting membranes of chromaffin granules (AG) isolated from different animal species (ox, rabbit and rat) show similar values for their phospholipid phases (0.5 μmole phospholipids/mg protein). The AG-membranes, however, contain higher lysolecithin (LPC) (10–11%) than the SR-membranes (2–6%).

In both types of membrane a characteristic distribution of fatty acids was found in the phosphatidylcholine (PC) fraction. In SR-membranes 18-carbon fatty acids are present in increasing order of unsaturation (18:0<18:1<18:2) and in AG-membranes in decreasing order (18:0>18:1>18:2).

The fatty acid composition of PCs specific of each membrane seems to be dependent on the presence of different endogenous lysolecithins and suggest a fatty acid turnover in both positions of the PC by the de-and re-acylation cycle.

The importance in membrane function with regard to the Ca2+transport of SR and the amine transport of AG membranes as related to the typical lipid phase is discussed.

Key words

Fatty acids Phosphatidylcholine Membranes Lipid phase Transport function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balzer, H., Makinose, M., Fiehn, W., Hasselbach, W.: The binding of calcium transport inhibitors reserpine, chlorpromazine and prenylamine to the lipids of the membranes of the sarcoplasmic reticulum. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 456–473 (1968)Google Scholar
  2. Bartlett, G. R.: Phosphorus assay in column chromatography. J. biol. Chem. 234, 466–468 (1959)Google Scholar
  3. Blaschko, H., Firemark, H., Smith, A. D., Winkler, H.: Lipids of the adrenal medulla: lysolecithin, a characteristic, constituent of chromaffin granules. Biochem. J. 104, 545 (1967)Google Scholar
  4. Boland, R., Martonosi, A.: Developmental changes in the composition and function of sarcoplasmic reticulum. J. biol. Chem. 249, 612–623 (1974)Google Scholar
  5. Brooks, J. C., Siegel, F. L.: Purification of a calcium-binding phosphoprotein from beef adrenal medulla. J. biol. Chem. 248, 4189–4193 (1973)Google Scholar
  6. Bruce, A., Svennerholm, L.: Skeletal muscles lipids, changes in fatty acid composition of lecithin in man during growth. Biochim. biophys. Acta (Amst.) 239, 393–400 (1971)Google Scholar
  7. Da Prada, M., Pletscher, A., Tranzer, J. P.: Lipid composition of membranes of amine-storage organelles. Biochem. J. 127, 681–683 (1972)Google Scholar
  8. Demel, R. A., Wirtz, K. W. A., Geurts van Kesel, W. S. M., van Deenen, L. L. M.: Phosphatidylcholine exchange protein from beef liver. Nature New Biol. 246, 102–105 (1973)Google Scholar
  9. Drabikowski, W., Dominas, H., Dabrowska, M.: Lipid patterns in microsomal fractions of rabbit skeletal muscles. Acta biochem. pol. 13, 12 (1966)Google Scholar
  10. Fiehn, W., Hasselbach, W.: The effect of phosphlipase A on the calcium transport and the role of unsaturated fatty acids in ATPase activity of sacroplasmic vesicles. Europ. J. Biochem. 13, 510–518 (1970)Google Scholar
  11. Folch, J., Lees, M., Sloane-Stanley, G. H.: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 226, 497–509 (1957)Google Scholar
  12. Foldes, A., Jeffrey, P. L., Preston, B. N., Austin, L.: Dopamine-β-hydroxylase of bovine adrenal medullae. Biochem. J. 126, 1209–1217 (1972)Google Scholar
  13. Hasselbach, E.: Die sarkoplasmatische Calciumpumpe. Arzneimittel-Forsch. (Drug Res.) 22, 2028–2036 (1972)Google Scholar
  14. Hasselbach, W., Makinose, M.: Die Calciumpumpe der Erschlaffungsorgane des Muskels und ihre Abhängigkeit von der ATP-Spaltung. Biochem. Z. 333, 518–528 (1961)Google Scholar
  15. Khan, A. R., Balzer, H.: The acyl-CoA-lysolecithinacyl-transferase activity of sarcoplasmic vesicular and adrenal granular membranes in relation to membranal phospholipid contents and active calcium transport. Naunyn-Schmiedebergs Arch. Pharmacol. 279, 9 (1973)Google Scholar
  16. Khan, A. R., Balzer, H.: Different lysolecithins in the Ca2+-transporting sarcoplasmic reticulum (SR) and amine storage adrenal medulla granular (AG) membranes in relation to de-and re-acylation cycle of the lecithin and membranal function. Naunyn-Schmiedebergs Arch. Pharmacol. 285, R42 (1974)Google Scholar
  17. Kuksis, A., Breckenridge, W. C., Marai, L., Stachnyk, O.: Quantitative gas chromatography in the structural characterization of glyceryl phosphatides. J. Amer. Oil Chem. Soc. 45, 537–546 (1968)Google Scholar
  18. Lands, W. E. M.: Effects of double bonds configuration on lecithin synthesis. J. Amer. Oil Chem. Soc. 42, 465–467 (1965)Google Scholar
  19. Long, C., Penny, I. F.: The structure of naturally occuring phosphoglycerides. 3. Action of moccasinvenom phospholipase A on ovolecithin and related substances. Biochem. J. 65, 382–389 (1957)Google Scholar
  20. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. L.: Protein measurement with the folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  21. Madeira, V. M. C., Antunes-Madeira, M. C.: Chemical composition of sarcolemma isolated from rabbit skeletal muscle. Biochim. biophys. Acta (Amst.) 298, 230–238 (1973)Google Scholar
  22. Ostwald, T. J., McLennan, D. H.: Isolation of a high affinity calcium-binding protein from sarcoplasmic reticulum. J. biol. Chem. 249, 974–979 (1974)Google Scholar
  23. Skipski, V. P., Smolowe, A. F., Sullivan, R. C., Barclay, M.: Separation of lipid by thin-layer chromatography. Biochim. biophys. Acta (Amst.) 106, 386–396 (1965)Google Scholar
  24. Smith, A. D., Winkler, H.: A simple method for the isolation of adrenal chromaffin granules on a large scale. Biochem. J. 103, 480–482 (1967)Google Scholar
  25. Stahl, E.: Dünnschichtchromatographie. Berlin-Göttingen-Heidelberg: Springer 1962Google Scholar
  26. Taugner, G., Wähler, A.: Effect of lipid modification on catecholamine fluxes and ATPase activity in storage vesicles from the adrenal medulla. Naunyn-Schmiedebergs Arch. Pharmacol. 282, 261–278 (1974)Google Scholar
  27. The, R., Hasselbach, W.: Properties of the sarcoplasmic ATPase reinstituted by oleate and lysolecithin after lipid depletion. Europ. J. Biochem. 28, 357–363 (1972)Google Scholar
  28. Walter, H., Hasselbach, W.: Properties of calcium independent ATPase of the membranes of the sarcoplasmic reticulum delipidated by the nonionic detergent triton X-100. Europ. J. Biochem. 36, 110–119 (1973)Google Scholar
  29. Weinshilboum, R. M., Axelrod, J.: Serum dopamine-β-hydroxylase activity. Circulat. Res. 28, 307–315 (1971)Google Scholar
  30. Winkler, H., Smith, A. D., Dubois, F.: The positional specificity of lysosomal phospholipase A activities. Biochem. J. 105, 38–40 (1967)Google Scholar
  31. Winkler, H., Strieder, N., Ziegler, E.: Über Lipide, insbesondere Lysolecithin, in den chromaffinen Granula verschiedener Species. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 256, 407–415 (1967)Google Scholar
  32. Winkler, H., Smith, A. D.: Lipid of adrenal chromaffin granules: Fatty acid composition of phospholipids, in particular lysolecithin. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 261, 379–388 (1968)Google Scholar
  33. Woelk, H., Goracci, G., Gaiti, A., Porcellati, G.: Phospholipase A1 and A2 activities of neuronal and glial cells of the rabbit brain. Hoppe-Seylers Z. physiol. Chem. 354 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • H. Balzer
    • 1
  • A. Rauf Khan
    • 1
  1. 1.Zentrum der Pharmakologie (Abt. I)Klinikum der Johann Wolfgang Goethe-UniversitätFrankfurt am Main 70Federal Republic of Germany

Personalised recommendations