Advertisement

Histochemistry

, Volume 72, Issue 3, pp 369–375 | Cite as

Attempted direct visualization of negatively stained amplified immune complex of synaptic acetylcholinesterase using cryoultramicrotomy sections

  • S. Tsuji
Article

Summary

An immunocytochemical method is proposed for the localization of synaptic acetylcholinesterase (AChE) on ultrathin frozen sections of the electric organ of the electric eel. The immune complex formed is amplified by a non-specific “sandwich” technique and visualized by negative staining. Definite white spots on synaptic cleft seem to correspond to basal lamina AChE molecules.

Keywords

Public Health Freeze Section Immune Complex Acetylcholinesterase Basal Lamina 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avrameas S (1969) Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochemistry 6:43–52Google Scholar
  2. Bernhard W, Viron A (1971) Improved techniques for the preparation of ultrathin frozen sections. J Cell Biol 49:731–746Google Scholar
  3. Benda P, Tsuji S, Daussant J, Changeux JP (1970) Localization of acetylcholinesterase by immunofluorescence in eel electroplax. Nature 225:1149–1150Google Scholar
  4. Betz W, Sakmann B (1971) Disjunction of frog neuromuscular synapses by treatment with proteolytic enzymes. Nature (New Biol) 232:94–95Google Scholar
  5. Cartaud J, Rieger F, Bon S, Massoulié J (1975) Fine structure of electric eel acetylcholinesterase. Brain Res 88:127–130Google Scholar
  6. Christensen AK (1971) Frozen thin sections of fresh tissue for electron microscopy, with a description of pancreas and liver. J Cell Biol 51:772–804Google Scholar
  7. Couteaux R, Delaitre D (1972) Essai de localisation des cholinestérases sur coupes à congélation ultrafines. J Microsc (Paris) 13:150–152Google Scholar
  8. Dudai Y, Herzberg M, Silman I (1973) Molecular structures of acetylcholinesterase from electric organ tissue of the electric eel. Proc Natl Acad Sci 70:2743–2746Google Scholar
  9. Gautron J (1974) Cytochimie ultrastructurale des acétylchlinestérases. J Microsc (Paris) 21:259–264Google Scholar
  10. Hall ZW, Kelly RB (1971) Enzymatic detachment of endplate acetylcholinesterase from muscle. Nature (New Biol) 232:62–63Google Scholar
  11. Hodson S, Marshall J (1969) Ultracryotomy: a technique for cutting ultrathin sections of unfixed frozen biological tissues for electron microscopy. J Microsc (Oxford) 91:105–117Google Scholar
  12. Massoulié J, Rieger F, Bon S (1971) Especes acétylchlinestérasiques globulaires et allongées des organes électriques de Poissons. Eur J Biochem 21:542–551Google Scholar
  13. McMahan UJ, Sanes JR, Marshall LM (1978) Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature 271:172–174Google Scholar
  14. Nakane PK (1968) Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem 16:557–560Google Scholar
  15. Obinata T, Shimada Y, Matsuda R (1979) Troponin in embryonic skeletal msucle cells in vitro: An immunoelectron microscope study. J Cell Biol 81:59–66Google Scholar
  16. Ohtsuki I, Masaki T, Nonomura Y, Ebashi S (1967) Periodic distribution of troponin along the thin filaments. J Biochem 61:817–819Google Scholar
  17. Rieger F, Bon S, Massoulié J, Cartaud J (1973) Observation par microscopie électronique des formes allongée et globulaires de l'acétylcholinestérase de Gymnote (Electrophorus electricus). Eur J Biochem 34:539–547Google Scholar
  18. Salpeter MM (1969) Electron microscope radioautography as a quantitative tool in enzyme cytochemistry. II. The distribution of DFP-reactive sites at motor endplates of a vertebrate twitsch muscle. J Cell Biol 42:122–134Google Scholar
  19. Singer SJ (1959) preparation of an electron dense antibody conjugates. Nature 183:1523–1524Google Scholar
  20. Sternberger LA (1979) Immunocytochemistry, 2nd ed., John Wiley, New YorkGoogle Scholar
  21. Sternberger LA, Hardy PH Jr, Cuculis JJ, Cuculis JJ, Meyer HG (1970) The unlabeled antibody enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horse radish peroxidase anti-horse radish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333Google Scholar
  22. Thornell LE, Sjöström M (1975) The myofibrillar M-band in the cryosection—analysis of section thickness. J Microsc (Oxford) 104:263–269Google Scholar
  23. Tokuyasu KT (1973) A technique for ultracryotomy of cell suspension and tissues. J Cell Biol 551–565Google Scholar
  24. Tokuyasu KT, Singer SJ (1976) Improved procedure for immunoferritin labeling of ultrathin frozen sections. J Cell Biol 71:894–906Google Scholar
  25. Tsuji S (1974) On the chemical basis of thiocholine methods for demonstration of acetylcholinesterase activities. Histochemistry 42:99–110Google Scholar
  26. Tsuji S (1978) Ultracryotomy of nerve-electroplaque synapses for immunocytochemistry. J Neurocytol 7:381–389Google Scholar
  27. Tsuji S (1980) A method for obtaining cryo-ultramicrotome sections of 35 nm thickness monitored by myofibrillar fine structure. J Microsc (Oxford) 120:113–116Google Scholar
  28. Tsuji S, Rieger F, Peltre G, Massoulié J, Benda P (1972) Acétylcholinestérase du muscle, de la moelle épinière et du cerveau de Gymnote Mise en évidence des espèces moleculaires “native” et localisation histochimique. J Neurochem 19:989–997Google Scholar
  29. Valentine RC, Green NM (1967) Electron microscopy of an antibody-hapten complex. J Mol Biol 27:615–617Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • S. Tsuji
    • 1
  1. 1.Laboratoire de CytologieUniversité Paris VIParis Cedex 05France

Personalised recommendations