Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 285, Issue 4, pp 315–324 | Cite as

The mechanism of halothane binding to microsomal cytochrome P450

  • D. Mansuy
  • W. Nastainczyk
  • V. Ullrich


The unusual difference spectrum obtained with halothane and reduced rat liver microsomal cytochrome P450 can be simulated by addition of trifluoro diazoethane to dithionite reduced microsomes. Chemical evidence and model reactions suggest that in both cases a trifluoromethyl carbene complex is formed with the reduced hemoprotein. The spectral dissociation constants of the two species are similar as are their competitive reactions with carbon monoxide. The partial destruction of the carbenoid-cytochrome P450 complex characterizes the ligand as a highly reactive species. It is assumed that under anaerobic conditions this complex is formed by a two electron reduction of halothane and that covalent binding to microsomal proteins proceeds by this carbenoid species. A possible relationship to the hepatotoxicity of polyhalogenated compounds and anesthetics is discussed.

Key words

Halothane Microsomal Cytochrome P450 Carbenoid Reductive Dehalogenation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Affolter, H., Hartmann, G., Kopfhammer, V., Scheidegger, S.: Akute Massennekrose der Leber nach mehrmaliger Halothane-Narkose. Schweiz. med. Wschr. 94, 396–400 (1964)Google Scholar
  2. Atherton, J. H., Fields, R.: Reaction of trifluoromethylcarbene with cis- and trans-but-2-ene. J. chem. Soc. (Lond.) 1967, 1450–1454Google Scholar
  3. Blanchard, E. P., Simmons, H. E.: Cyclopropane synthesis from methylene iodide, zinc-copper couple, and olefins. J. Amer. chem. Soc. 88, 1337–1356 (1969)Google Scholar
  4. Bruce, D. L.: What is a “safe” interval between halothane exposures? J. Amer. med. Ass. 221, 1140–1143 (1972)Google Scholar
  5. Cardin, D. J., Cetinkaya, B., Lappert, M. F.: Transition metal-carbene complexes. Chem. Rev. 72, 545–574 (1972)Google Scholar
  6. Carney, F. M. P., Van Dyke, R. A.: Halothane hepatitis. A critical review. Anesth. Analg. Curr. Res. 51, 135 (1972)Google Scholar
  7. Castro, C. E., Kray, W. C., Jr.: Carbenoid intermediates from polyhalomethanes and chromium (II). The homogeneous reduction of geminal halides by chromous sulfate. J Amer. chem. Soc. 88, 4447–4455 (1966)Google Scholar
  8. Cohen, E. N.: Metabolism of halothane-2-14C in the mouse. Anesthesiology 31, 560–565 (1969)Google Scholar
  9. Duncan, W. A. M., Raventos, J.: The pharmacokinetics of halothane (Fluothane) anasthesia. Brit. J. Anaesth. 31, 302 (1959)Google Scholar
  10. Fields, R., Haszeldine, R. N.: Carbene Chemistry. Part I. Reactions of fluoroalkyldiazocompounds. J. Chem. Soc. (Lond.) 1964, 1881–1889Google Scholar
  11. Frommer, U., Ullrich, V., Staudinger, Hj.: Hydroxylation of aliphatic compounds by liver microsomes. Hoppe-Seylers Z. physiol. Chem. 351, 903–912 (1970)Google Scholar
  12. Gornall, A. G., Bardawill, C. J., David, M. M.: Determination of serum albumins by means of the biuret reaction. J. biol. Chem. 177, 751 (1949)Google Scholar
  13. Haley, F. C., Wyant, G. M.: The effect of halothane on the liver of dogs exposed to mild hypoxia. Canad. Anesth. Soc. J. 6, 271–276 (1959)Google Scholar
  14. Hildebrandt, A. G., Leibman, K. C., Estabrook, R. W.: Metyrapone interaction with hepatic microsomal cytochrome P450 from rats treated with phenobarbital. Biochem. biophys. Res. Commun. 37, 477–485 (1969)Google Scholar
  15. Jefcoate, C. R. E., Calabrese, R. L., Gaylor, J. L.: Ligand interaction with hemoprotein P450. III. The use of n-octylamine and ethyl isocyanide difference spectroscopy in the quantitative determination of high- and low-spin P450. Molec. Pharmacol. 6, 391–401 (1970)Google Scholar
  16. Kirmse, W.: Carbene chemistry. 2nd ed. New York: Academic Press 1971Google Scholar
  17. McLean, A. E. M.: Effects of hexane and carbon tetrachloride on microsomal cytochrome P450. Biochem. Pharmacol. 16, 2030–2033 (1967)Google Scholar
  18. Moser, W. R.: The mechanism of copper-catalyzed additions of diazoalkanes to olefins. J. Amer. chem. Soc. 91, 1141–1146 (1969)Google Scholar
  19. Peterson, J. A., Ullrich, V., Hildebrandt, A. G.: Metyrapone interaction with Pseudomonas putida cytochrome P450. Arch. Biochem. Biophys. 145, 531–542 (1971)Google Scholar
  20. Rehder, K., Forbes, J., Alter, H., Hessler, O., Stier, A.: Halothane biotransformation in man. A quantitative study. Anesthesiology 28, 711–715 (1967)Google Scholar
  21. Rosenberg, P. H., Wahlström, T.: Trifluoroacetic acid and some possible intermediate metabolites of halothane as haptens. Anesthesiology 38, 224–227 (1973)Google Scholar
  22. Uehleke, H., Hellmer, K. H., Tabarelli-Poplawski, S.: Metabolic Activation of Halothane and its Covalent Binding to Liver Endoplasmic Proteins in vitro. Naunyn-Schmiedeberg's Arch. Pharmacol. 279, 39–52 (1973)Google Scholar
  23. Ullrich, V.: Enzymatic hydroxylations with molecular oxygen. Angew. Chem. internat. Edit. 11, 701–712 (1972)Google Scholar
  24. Ullrich, V., Schnabel, K. H.: Formation and binding of carbanions by cytochrome P450 of liver microsomes. Drug Metab. Disposition 1, 176–182 (1973)Google Scholar
  25. Van Dyke, R. A., Wood, C. L.: Binding of radioactivity from 14C-labeled halothane in isolated perfused rat livers. Anesthesiology 38, 328–332 (1973)Google Scholar
  26. Yates, P.: Transition metal-catalyzed decomposition of diazoalkanes is thought to proceed through a carbene metal complex. J. Amer. chem. Soc. 74, 5376–5381 (1952)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • D. Mansuy
    • 1
  • W. Nastainczyk
    • 1
  • V. Ullrich
    • 1
  1. 1.Fachbereich Theoretische MedizinUniversität des SaarlandesHomburg (Saar)Federal Republic of Germany

Personalised recommendations