Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 326, Issue 4, pp 287–290 | Cite as

Evidence for an antagonistic action of tabernanthine on hypoxia-induced changes in brain serotonin levels

  • Elisabeth Mocaër-Cretet
  • Monique Prioux-Guyonneau
  • Fella Redjimi
  • Yves Cohen
  • Christian Jacquot


The effects of tabernanthine on serotonin (5-HT) levels were determined in several brain areas of rats exposed to various simulated altitudes (1800, 5200, 7000 m). The 5-HT synthesis inhibitor, para-chlorophenylalanine (PCPA), was used to dissociate the effects occurring at synthesis and release levels. Tabernanthine antagonized the decrease in hypothalamic 5-HT levels induced by a 7000 m hypoxia and also suppressed the decrease in PCPA-induced depletion observed at 5200 and 7000 m in the hypothalamus, the striatum and the rest of the brain. It was assumed that tabernanthine stimulates different steps of 5-HT metabolism. These effects, revealed by hypoxia, are related to other peripheral and central properties of this drug.

Key words

Tabernanthine Brain serotonin Hypobaric hypoxia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boismare F, Le Poncin-Lafitte M, Rapin JR (1980) Blockade of different enzymatic steps in the synthesis of brain amines and memory (CAR) in hypobaric hypoxic rats treated or untreated by l-DOPA. Aviat Space Environ Med 51:126–128Google Scholar
  2. Brown RM, Kehr W, Carlsson A (1975) Functional and biochemical aspects of catecholamine metabolism in brain under hypoxia. Brain Res 85:491–509Google Scholar
  3. Brown RM, Snider SM, Carlsson A (1974) Changes in biogenic amine synthesis and turnover induced by hypoxia and/or foot shock stress. II. The central nervous system. J Neural Transm 35:293–305Google Scholar
  4. Cretet E, Prioux-Guyonneau M, Jacquot C, Sentenac H, Wepierre J (1980) Effect of tabernanthine on the turnover time of brain catecholamines in normal and hypobaric hypoxic rats. Naunyn-Schmiedeberg's Arch Pharmacol 313:119–123Google Scholar
  5. Cruzon G, Green AR (1970) Rapid method for determination of 5-hydroxytryptamine and 5-hydroxyindole-acetic acid in small regions of rat brain. Br J Pharmacol 39:653–655Google Scholar
  6. Curzon G, Kantamaneni BD, Tricklebank MD (1981) A comparison of an improved o-phthalaldehyde fluorimetric method and high pressure liquid chromatography in the determination of brain 5-hydroxyindoles of rats treated with l-tryptophan and p-chlorophenylalanine. Br J Pharmacol 73:555–561Google Scholar
  7. Davis JN, Carlsson A (1973a) Effect of hypoxia on tyrosine and tryptophan hydroxylation in unanesthetized rat brain. J Neurochem 20:913–915Google Scholar
  8. Davis JN, Carlsson A (1973b) The effects of hypoxia on monoamine synthesis level and metabolism in rat brain. J Neurochem 21:783–790Google Scholar
  9. Davis JN, Giron LT, Stanton E, Maury W (1979) The effect of hypoxia on brain neurotransmitter systems. Adv Neurol 26:219–223Google Scholar
  10. Forchetti CM, Meek JL (1981) Evidence for a tonic GABAergic control of serotonin neurons in the median raphe nucleus. Brain Res 206:208–212Google Scholar
  11. Gibson GE, Peterson C, Sansone J (1981) Decrease in amino acid and acetylcholine metabolism during hypoxia. J Neurochem 37:192–201Google Scholar
  12. Hajo H, Dupont Ch, Wepierre J (1981) Action de la tabernanthine sur différents paramètres cardiovasculaires chez le Rat et le Chien. J Pharmacol (Paris) 12:441–454Google Scholar
  13. Hedner T (1978) Central monoamine metabolism and neonate oxygen deprivation. Acta Physiol Scand Suppl 460:34Google Scholar
  14. Iversen LL, Glowinski J (1966) Regional studies of catecholamines in rat brain. J Neurochem 13:655–669Google Scholar
  15. Miller FP, Cox RH, Snodgrass WR, Maickel RP (1970) Comparative effects of p-chlorophenylalanine, p-chloroamphetamine and p-chloro-N-methylamphetamine on rat brain norepinephrine, serotonin and 5-hydroxyindole-3-acetic acid. Biochem Pharmacol 19:435–442Google Scholar
  16. Mocaër-Cretet E (1981) Hypoxie hypobare et neuromédiateurs. Effets pharmacologiques et biochimiques centraux de la tabernanthine. Thesis Pharm: Paris XI, 129:180Google Scholar
  17. Mocaër-Cretet E, Hajo N, Dupont Ch, Jacquot C, Wepierre J (1980): Modification de l'activité comportementale de la tabernanthine chez la Souris en normoxie et en hypoxie hypobare. J Pharmacol (Paris) 11:330Google Scholar
  18. Prioux-Guyonneau M, Cretet E, Jacquot C, Rapin JR, Cohen Y (1979) The effects of various stimulated altitudes of the turnover of norepinephrine and dopamine in the central nervous system of rats. Pflügers Arch 380:127–132Google Scholar
  19. Prioux-Guyonneau M, Mocaër-Cretet E, Redjimi-Hafsi F, Jacquot C (1982) Changes in brain 5-hydroxytryptamine metabolism induced by hypobaric hypoxia. Gen Pharmacol 13:251–254Google Scholar
  20. Raymond-Hamet M, Vincent D (1960) Sur quelques effets pharmacologiques de trois alcaloides du Tabernanthe Iboga Baillon, Ibogamine, Ibolutéine et Tabernanthine. CR Soc Biol 154:2223–2227Google Scholar
  21. Saligaud C, Moore N, Boulu R, Plotkine M, Leclerc JL, Prioux-Guyonneau M, Boismare F (1981) Hypobaric hypoxia: central catecholamines levels, cortical PO2 and avoidance response in rats treated with apomorphine. Aviat Space Environ Med 52:166–170Google Scholar
  22. Scatton B, Ziukovic B, Dedek J, Lloyd KG, Constanti-Dinis J, Tissot R, Bartholini G: γ-aminobutyric acid (GABA) receptor stimulation. III. Effect of progabide (SL 76002) on norepinephrine, dopamine and 5-hydroxytryptamine turnover in rat brain areas. J Pharmacol Exp Ther 220:678–688Google Scholar
  23. Thomann G, Servin A, Besancon M, Garcet S (1975) Effets d'un complexe alcaloïdique de Vinca minor apocynacées (L.J. 533) sur le comportement et le taux de noradrénaline cérébrale de la souris en hypoxie aiguë. J Pharmacol (Paris) 6:291–300Google Scholar
  24. Valette G, Leclair MF (1977) Effets des alcaloïdes du Tabernanthe Iboga H. Bn. sur les réponses des organes isolés aux catécholamines et rôle des échanges de calcium. Cas de la tabernanthine. C. R. Acad Sci (Paris) 285:591–594Google Scholar
  25. Zetler G (1964) Einige pharmakologische Eigenschaften von 12 natürlichen und 11 partialsynthetisch abgewandelten Indolalkaloiden aus tropischen Apocynaceen des subtribus Tabernaemontaninae. Arzneim Forsch Drug Res 11:1277–1286Google Scholar
  26. Zetler G, Singbartl G, Schlosser L (1972) Cerebral pharmacokinetics of tremor producing harmala and iboga alkaloids. Pharmacology 7:237–248Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Elisabeth Mocaër-Cretet
    • 1
  • Monique Prioux-Guyonneau
    • 1
  • Fella Redjimi
    • 1
  • Yves Cohen
    • 1
  • Christian Jacquot
    • 1
  1. 1.Laboratoire de PharmacologieFaculté de PharmacieChatenay-MalabryFrance

Personalised recommendations