Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 308, Issue 3, pp 255–260 | Cite as

Centrally and peripherally mediated inhibition of intestinal motility by opioids

  • Rüdiger Schulz
  • Michael Wüster
  • Albert Herz
Article

Summary

Intracerebroventricularly injected morphine is 50-fold more potent in arresting intestinal peristalsis in rats, mice or guinea pigs than morphine administered systemically. Using quaternary naloxone as narcotic antagonist, it has been demonstrated that the peripheral pathway of the centrally mediated constipatory effect of morphine does not involve opioid peptidergic mechanisms. Further, this effect is not due to the release of opioid peptides from the pituitary, since hypophysectomy fails to affect the antipropulsive activity of morphine. On the other hand, the intestinal motility can be affected directly by activation of opiate receptors located in the gut. This was best demonstrated with loperamide, which exhibits predominantly a peripheral site of action. Thus, two mechanisms of the action of morphine on gastrointestinal propulsive activity have been demonstrated. One arises in the central nervous system (CNS) and is mediated peripherally not by opioid peptidergic pathways, whereas the other is due to a direct action of morphine on the gut.

Key words

Constipation Quaternary naloxone Morphine Loperamide Opiate receptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergland, R. M., Page, R. B.: Can the pituitary secrete directly to the brain? (Affirmative anatomical evidence). Endocrinology 102, 1325–1338 (1978)Google Scholar
  2. Cowan, A., Doxey, J. C., Metcalf, G.: A comparison of pharmacological effects produced by leucine-enkephalin, methionine-enkephalin, morphine and ketocyclazocine. In: Opiates and endogenous opioid peptides (H. W. Kosterlitz, ed.), pp. 95–102. Amsterdam: Elsevier/North-Holland Biomedical Press 1976Google Scholar
  3. D'Amour, F. E., Smith, D. L.: A method for determining loss of pain sensation. J. Pharmacol. Exp. Ther. 72, 74–79 (1941)Google Scholar
  4. Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W., Bloom, F.: β-Endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science 197, 1367–1369 (1977)Google Scholar
  5. Haley, T. J., McCormick, W. G.: Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br. J. Pharmacol. 12, 12–15 (1957)Google Scholar
  6. Herz, A., Bläsig, J.: Analgesia, catatonia and changes in core temperature induced by opiates and endorphins: a comparison. In: Endorphins in mental health (E. Usdin, W. E. Bunney, Jr., and N. S. Kline, eds.), pp. 269–278. London: Macmillan Press 1979Google Scholar
  7. Höllt, V., Przewlocki, R., Herz, A.: β-Endorphin-like immunoreactivity in plasma, pituitaries and hypothalamus of rats following treatment with opiates. Life Sci. 23, 1057–1066 (1978)Google Scholar
  8. Hughes, J., Kosterlitz, H. W., Smith, T. W.: The distribution of methionine-enkephalin and leucine-enkephalin in the brain and peripheral tissues. Br. J. Pharmacol. 61, 639–647 (1977)Google Scholar
  9. Kosterlitz, H. W., Lord, J. A. H., Watt, A. J.: Morphine receptors in the myenteric plexus of the guinea-pig ileum. In: Agonist and antagonist action of narcotic analgesic drugs (H. W. Kosterlitz, H. D. J. Collier, and J. E. Villarreal, eds.), pp. 45–61. London: Macmillan Press 1972Google Scholar
  10. Kosterlitz, H. W., Waterfield, A. A.: In vitro models in the study of structure-activity relationships of narcotic analgesics. Ann. Rev. Pharmacol. 15, 29–47 (1975)Google Scholar
  11. Kosterlitz, H. W., Watt, A. J.: Kinetic parameters of narcotic agonists and antagonists, with particular reference to N-allylnoroxymorphone (naloxone). Br. J. Pharmacol. 33, 266–276 (1968)Google Scholar
  12. Kromer, W., Teschemacher, H., Fischer, C., Höllt, V., Schulz, R., Voigt, K. H.: Indication for a possible role of endorphins in pregnancy. In: Characteristics and function of opioids, Vol. 4 (J. M. van Ree and L. Terenius, eds.), pp. 281–282. Amsterdam: Elsevier/North-Holland Biomedical Press 1978Google Scholar
  13. Laschka, E., Teschemacher, H., Mehraein, P., Herz, A.: Sites of action of morphine involved in the development of physical dependence in rats. Psychopharmacologia (Berl.) 46, 141–147 (1976)Google Scholar
  14. Lord, J. A. H., Waterfield, A. A., Hughes, J., Kosterlitz, H. W.: Endogenous opioid peptides: multiple agonists and receptors. Nature 267, 495–499 (1977)Google Scholar
  15. Margolin, S.: Decreased gastrointestinal propulsive activity after intracranial morphine. Fed. Proc. 13, 383 (1954)Google Scholar
  16. Margolin, S.: Centrally mediated inhibition of gastrointestinal propulsive motility by morphine over a nonneural pathway. Proc. Soc. Exp. Biol. Med. (N.Y.) 112, 311–315 (1963)Google Scholar
  17. Margolin, S., Plekss, O. J.: A neurohumoral substance discharged into blood perfusate from isolated rabbit heads by intracerebral morphine. Med. Pharmacol. Exp. 12, 1–7 (1965)Google Scholar
  18. Martin, W. R., Eades, C. G., Thompson, J. A., Huppler, R. E., Gilbert, P. E.: The effect of morphine- and nalorphine-like drugs in the nodependent and morphine-dependent chronic spinal dog. J. Pharmacol. Exp. Ther. 197, 517–532 (1976)Google Scholar
  19. Niemegeers, C. J. E., Lenaerts, F. Awouters, F.: Preclinical animal studies of modern antidiarrheals. In: Synthetic antidiarrheal drugs (W. Bever and H. Lal, eds.), pp. 65–114. New York: M. Dekker 1976Google Scholar
  20. Organikum, organisch-chemisches Grundpraktikum, 10. Auflage, pp. 231. Berlin: VEB Deutscher Verlag der Wissenschaften 1971Google Scholar
  21. Parolaro, D., Sala, M., Gori, E.: Effect of intracerebroventricular administration of morphine upon intestinal motility in rat and its antagonism with naloxone. Eur. J. Pharmacol. 46, 329–338 (1977)Google Scholar
  22. Puig, M. M., Gascón, P., Craviso, G. L., Musacchio, J. M.: Electrically induced release of an endogenous opiate receptor ligand in the guinea-pig ileum. Science 145, 419–420 (1977)Google Scholar
  23. Roemer, D., Buescher, H. H., Hill, R. C. et al.: A synthetic enkephalin analogue with prolonged parenteral and oral analgesic activity. Nature 268, 547–549 (1977)Google Scholar
  24. Rossier, J., French, E. D., Rivier, C., Ling, N., Guillemin, R., Bloom, F. E.: Foot-shock induced stress increases β-endorphin levels in blood but not in brain. Nature 270, 618–620 (1977)Google Scholar
  25. Schultzberg, M., Dreyfus, C. F., Gershon, M. D., Hökfelt, T., Elde, R. P., Nilsson, G., Said, S., Goldstein, M.: VIP-enkephalin-, substance P- and somatostatin-like immunoreactivity in neurons intrinsic to the intestine: immunohistochemical evidence from organotypic tissue cultures. Brain Res. 155, 239–248 (1978)Google Scholar
  26. Schulz, R.: The use of isolated organs to study the mechanism of action of narcotic analgesics. In: Developments in opiate research (A. Herz, ed.), pp. 241–277. New York: M. Dekker 1978Google Scholar
  27. Schulz, R., Goldstein, A.: Inactivity of narcotic glucuronides as analgesics and on guinea-pig ileum. J. Pharmacol. Exp. Ther. 183, 404–410 (1972)Google Scholar
  28. Schulz, R., Wüster, M., Herz, A.: Supersensitivity of opioids following the chronic blockade of endorphin action by naloxone. Naunyn-Schmiedeberg's Arch. Pharmacol. 306, 93–96 (1979)Google Scholar
  29. Stewart, J. J., Weisbrodt, N. W., Burks, T. F.: Centrally mediated intestinal stimulation by morphine. J. Pharmacol. Exp. Ther. 202, 174–181 (1977)Google Scholar
  30. Teschemacher, H.: Endogenous ligands of opiate receptors (endorphins). In: Developments in opiate research (A. Herz, ed.), pp. 67–151. New York: M. Dekker 1978Google Scholar
  31. Weinstock, M.: Sites of action of narcotic analgesic drugs —peripheral tissues. In: Narcotic drugs — biochemical pharmacology (D. H. Clouet, ed.), pp. 394–407. New York: Plenum Press 1971Google Scholar
  32. Wüster, M., Herz, A.: Opiate agonist action of antidiarrheal agents in vitro and in vivo findigs in support for selective action. Naunyn-Schmiedeberg's Arch. Pharmacol. 301, 187–194 (1978)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Rüdiger Schulz
    • 1
  • Michael Wüster
    • 1
  • Albert Herz
    • 1
  1. 1.Institut für NeuropharmakologieMax-Planck-Institut für PsychiatrieMünchen 40Federal Republic of Germany

Personalised recommendations