Advertisement

Increase of liver microsomal benzo(a)pyrene monooxygenase activity by subsequent glucuronidation

  • K. W. Bock
Short Communication

Summary

Benzo(a)pyrene monooxygenase activity in rat and guinea pig liver microsomes is markedly stimulated when UDP-glucuronic acid is present in the assay. This effect is further enhanced by addition of UDP-N-acetylglucosamine, an allosteric activator of UDP-glucuronyltransferase. The results suggest a coupling between microsomal monooxygenase and UDP-glucuronyltransferase which may assist elimination of toxic compounds.

Key words

Benzo(a)pyrene monooxygenase UDP-glucuronyltransferase Enzyme coupling Enzyme induction Detoxication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. von Bahr, C., Bertilsson, L.: Hydroxylation and subsequent glucuronide conjugation of desmethylimipramine in rat liver microsomes. Xenobiotica 1, 205–212 (1971)Google Scholar
  2. Bock, K. W., White, I. N. H.: UDP-glucuronyltransferase in perfused rat liver and in microsomes: Influence of phenobarbital and 3-methylcholanthrene. Eur. J. Biochem. 46, 451–459 (1974)Google Scholar
  3. Bock, K. W., Van Ackeren, G., Lorch, F., Birke, F. W.: Metabolism of naphthalene to naphthalene dihydrodiol glucoronide in isolated hepatocytes and in liver microsomes. Biochem. Pharmacol. 25, 2351–2356 (1976)Google Scholar
  4. Burke, M. D., Vadi, H., Jernström, B., Orrenius, S.: Metabolism of benzo(a)pyrene with isolated hepatocytes and the formation and degradation of DNA-binding derivatives. J. Biol. Chem. 252, 6424–6431 (1977)Google Scholar
  5. DePierre, J. W., Moron, M. S., Johannesen, K. A. M., Ernster, L.: A reliable, sensitive, and convenient radioactive assay for benzpyrene monooxygenase. Anal. Biochem. 63, 470–484 (1975)Google Scholar
  6. Hollmann, S., Touster, O.: Alterations in tissue levels of uridine diphosphate dehydrogenase, uridine diphosphate glucuronic acid pyrophosphatase and glucuronyltransferase induced by substances influencing the production of ascorbic acid. Biochem. Biophys. Acta 62, 338–352 (1962)Google Scholar
  7. Nemoto, N., Takayama, S.: Modification of benzo(a)pyrene metabolism with microsomes by addition of uridine 5′-diphosphoglucuronic acid. Cancer Res. 37, 4125–4129 (1977)Google Scholar
  8. Oesch, F., Daly, J.: Conversion of naphthalene to trans-naphthalene dihydrodiol: Evidence for the presence of a coupled aryl monooxygenase-epoxide hydrase system in hepatic microsomes. Biochem. Biophys. Res. Commun. 46, 1713–1720 (1972)Google Scholar
  9. Sims, P.: The metabolism of benzo(a)pyrene by rat-liver homogenates. Biochem. Pharmacol. 16, 613–618 (1967)Google Scholar
  10. Van Cantfort, J., De Graeve, J., Gielen, J. E.: Radioactive assay of aryl hydrocarbon hydroxylase. Improved method and biological importance. Biochem. Biophys. Res. Commun. 79, 505–512 (1977)Google Scholar
  11. Vessey, D. A., Goldenberg, J., Zakim, D.: Kinetic properties of microsomal UDP-glucuronyltransferase. Evidence for cooperative kinetics and activation by UDP-N-acetylglucosamine. Biochim. Biophys. Acta 309, 58–66 (1973)Google Scholar
  12. Winsnes, A.: Studies on the activation in vitro of glucuronyltransferase. Biochim. Biophys. Acta 191, 279–291 (1969)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • K. W. Bock
    • 1
  1. 1.Institut für Pharmakologie und Toxikologie der UniversitätGöttingenGermany

Personalised recommendations