Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 282, Issue 3, pp 279–293 | Cite as

Effects of lipid-modification on the isolated membrane of catecholamine storage vesicles

  • G. Taugner
  • A. Wähler
Article

Summary

The ATPase activity of isolated membranes of catecholamine storage vesicles from adrenal medulla remains unimpaired on hydrolysis of phospholipids by phospholipase A as long as the products of lipolysis—fatty acids and lysophosphatidyl derivatives—remain in contact with the protein.

Washing the phospholipase A-digested preparation with bovine serum albumin preferentially removes the fatty acids, inhibits the specific activity of the ATPase by 10% and reduces the rate of the net uptake of catecholamine.

After treatment with phospholipase A about 50% of the sedimentable membrane protein is lost. The supernatant does not display any ATPase activity indicating that dissolution of the membrane structure by lipid deprivation causes the function to cease.

Oleic acid slightly increases the ATPase activity of native isolated membranes and more markedly that of membranes previously partially deprived of phospholipids by treatment with phospholipase A and subsequent washing with serum albumin. The net uptake of catecholamine is inhibited completely by oleic acid. Lysolecithin leaves the ATPase activity of isolated membranes unimpaired, but it antagonizes the stimulant effect of oleic acid on the ATPase activity of the membrane preparation partially deprived of phospholipids.

Key words

ATPase Activity Transportmechanism Phospholipase A Lysolecithin Oleic Acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks, P.: The adenosine triphosphatase activity of adrenal chromaffin granules. Biochem. J. 95, 490–496 (1965)Google Scholar
  2. Blaschko, H., Firemark, H., Smith, A. D., Winkler, H.: Lipids of the adrenal medulla. Lysolecithin, a characteristic constituent of chromaffin granules. Biochem. J. 104, 545–549 (1967)Google Scholar
  3. Cuzner, M. L., Davison, A. N.: Quantitative thin layer chromatographie of lipids. J. Chromatogr. 27, 388–397 (1966)Google Scholar
  4. v. Euler, U. S. Lishajko, F.: Improved technique for the fluorimetric estimation of catecholamines. Acta physiol. scand. 51, 348–355 (1961)Google Scholar
  5. Fenster, L. J., Copenhaver, J. H.: Phosphatidyl serine requirement of (Na+−K+)-activated adenosine triphosphatase from rat kidney and brain. Biochim. biophys. Acta (Amst.) 137, 406–408 (1967)Google Scholar
  6. Fiehn, W., Hasselbach, W.: The effect of phospholipase A on the calcium transport and the role of unsaturated fatty acids in ATPase activity of sarcoplasmatic vesicles. Europ. J. Biochem. 13, 510–518 (1970)Google Scholar
  7. Folch, J., Lees, M., Stanley, S.: A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 226, 497–509 (1957)Google Scholar
  8. Greig, M. E., Gibbons, A. J.: Lipid-requirement for membrane bound (Na+−K+) transport system and impairment of cation transport in red blood cells. Arch. Biochem. Biophys. 61, 343–347 (1956)Google Scholar
  9. Hegyvary, M., Post, R. L.: Reversible inactivation of (Na+−K+)-ATPase by removing and restoring phospholipids. The Molecular Basis of Membrane Function, pp. 519–528. Ed. D. C. Tosteson. Englewood Cliffs, New Jersey: Prentice-Hall, Inc. 1968Google Scholar
  10. Makinose, M., Hasselbach, W.: Der Einfluß von Oxalat auf den Calcium-Transport isolierter Vesikel des sarkoplasmatischen Reticulum. Biochem. Z. 343, 360–382 (1965)Google Scholar
  11. Martonosi, A.: Role of phospholipids in ATPase activity and Ca-transport of fragmented sarcoplasmatic reticulum. Fed. Proc. 23, 913–921 (1964)Google Scholar
  12. Schatzmann, H. J.: Lipoprotein nature of red cell adenosine triphosphatase. Nature (Lond.) 196, 677 (1962)Google Scholar
  13. Smith, W. J., Kirshner, N.: A specific soluble protein from catecholamine storage vesicles of bovine adrenal medulla. I. Purification and chemical characteriza3ion. Molec. Pharmacol. 3, 52–62 (1967)Google Scholar
  14. Swanson, P. D., Bradford, H. F., McIlwain, H.: Stimulation and solubilization of the sodium ion-activated adenosine triphosphatase of cerebral microsomes by surface-active agents especially polyoxyethylene ethers: actions of phospholipase and a neuraminidase. Biochem. J. 92, 235–247 (1964)Google Scholar
  15. Tanaka, R., Sakamoto, T., Sakamoto, Y.: Mechanism of lipid activation of Na, K, Mg activated adenosine triphosphatase and K−Mg activated phosphatase of bovine cerebral cortex. J. Membr. Biol. 4, 42–51 (1971)Google Scholar
  16. Taugner, G.: The membrane of catecholamine storage vesicles of adrenal medulla. Catecholamine fluxes and ATPase activity. Naunyn-Schmiedebergs Arch. Pharmak. 270, 392–406 (1971)Google Scholar
  17. Taugner, G.: The membrane of catecholamine storage vesicles of adrenal medulla. Uptake and release of noradrenaline in relation to the pH and the concentration and steric configuration of the amine present in the medium. Naunyn-Schmiedeberg's Arch. Pharmacol. 274, 299–314 (1972)Google Scholar
  18. Taugner, G., Hasselbach, W.: Die Bedeutung der Sulfhydryl-Gruppen für den Catecholamin-Transport der Vesikel des Nebennierenmarkes. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 58–79 (1968)Google Scholar
  19. Taugner, G., Wähler, A.: Effects of phospholipase A on ATPase activity and catecholamine fluxes of storage vesicles from the adrenal medulla. Naunyn-Schmiedebergs Arch. Pharmak. 270, R142 (1971)Google Scholar
  20. Taugner, G., Wähler, A.: Effects of lipid-modification on catecholamine fluxes and ATPase activity in storage vesicles from the adrenal medulla. Naunyn-Schmiedeberg's Arch. Pharmacol. 282, 261–278 (1974)Google Scholar
  21. The, R., Hasselbach, W.: Properties of the sarcoplasmatic ATPase reconstituted by oleate and lysolecithin after lipid-depletion. Europ. J. Biochem. 28, 357–363 (1972)Google Scholar
  22. Wheeler, K. P., Whittam, R.: The involvement of phosphatidylserine in adenosine triphosphatase activity of the sodium pump. J. Physiol. (Lond.) 207, 303–328 (1970)Google Scholar
  23. Winkler, H., Strieder, N., Ziegler, E.: Über Lipide insbesondere Lysolecithin, in den chromaffinen Granula verschiedener Species. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 256, 407–415 (1967)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • G. Taugner
    • 1
  • A. Wähler
    • 1
  1. 1.Abteilung PhysiologieMax-Planck-Institut für Medizinische ForschungHeidelbergGermany

Personalised recommendations