Advertisement

Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 329, Issue 2, pp 117–122 | Cite as

Effects of discriminant and non-discriminant dopamine antagonists on in vivo accumulation of 3H-N-propyl-norapomorphine in mouse striatum and tuberculum olfactorium

  • C. Gulat-Marnay
  • A. Lafitte
  • J. -C. Schwartz
  • P. Protais
Article

Summary

The in vivo accumulation of 3H-N-propyl norapomorphine in mouse striatum and tuberculum olfactorium and its inhibition by a series of classical neuroleptics and discriminant benzamide derivatives previously identified in behavioural and radioligand experiments has been studied.

The ID50 values in the two brain areas did not significantly differ with any studied compound. In addition the regional distribution of a discriminant compound related to sulpiride and administered in tritiated form to rats was rather homogeneous.

These data do not indicate a preferential accumulation of these compounds in limbic as opposed to striatal areas.

Key words

Dopamine receptors 3H-N-propyl-norapomorphine Discriminant dopamine antagonists Striatum Tuberculum olfactorium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andèn NE, Stock G (1973) Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J Pharm Pharmacol 25:346–348Google Scholar
  2. Bartholini G, Zivkovic B, Scatton B, Bedek J, Worms P, Lloyd KG (1983) Substituted benzamides and other neuroleptics: do they block a common dopamine receptor? In: Matussek N (ed) Proceed. Symposium special aspects of psychopharmacology. L'Expansion Scient Franc, Paris, pp 83–90Google Scholar
  3. Baudry M, Martres MP, Schwartz J-C (1977) In vivo binding of 3H-pimozide in mouse striatum: effects of dopamine agonists and antagonists. Life Sci. 21:1163–1170.Google Scholar
  4. Fuxe K, Agnati LF, Anderson K, Calza L, Benfenati F, Köhler C (1983) Analysis of transmitter identified neurons by morphometry and quantitative microfluorometry. Evaluation of the actions of psychoactive drugs especially sulpiride. In: Matussek N (ed) Proceed. Symposium special aspects of psychopharmacology. L'Expansion Scient Franc, Paris, pp 13–34Google Scholar
  5. Hall MD, Jenner P, Kelly E, Marsden CD (1983) Differential anatomical location of 3H-N,n-propylnorapomorphine and 3H-spiperone binding sites in the striatum and substantia nigra of the rat. Br J Pharmacol 79:599–610Google Scholar
  6. Hall MD, Jenner P, Marsden CD (1983) Differential labelling of dopamine receptors in rat brain in vivo: comparison of 3H-piribedil 3H-N,n-propylnorapomorphine. Eur J Pharmacol 87:85–94Google Scholar
  7. Höllt VA, Czlonkowski A, Herz A (1977) The demonstration in vivo of specific binding sites for neuroleptic drugs in mouse brain. Brain Res 130:176Google Scholar
  8. Kebabian JW, Calne DB (1979) Multiple receptors for dopamine. Nature 277:93–96Google Scholar
  9. Köhler C, Fuxe K, Ross SB (1981) Regional in vivo binding of 3H-N-propylnorapomorphine in the mouse brain. Evidence for labelling of central dopamine receptors. Eur J Pharmacol 72:397–402Google Scholar
  10. Kuhar MJ, Murrin LC, Malong AT, Klemm N (1978) Dopamine receptor binding in vivo: the feasibility of autoradiographic studies. Life Sci 22:203–210Google Scholar
  11. Laduron PM, Leysen JE (1978) Spiperone: a ligand of choice for neuroleptic receptors. 2. Regional distribution and in vivo displacement of neuroleptic drugs. Biochem Pharmacol 27:317–321Google Scholar
  12. Ljungberg T, Ungerstedt U (1978) Classification of neuroleptic drugs according to their ability to inhibit apomorphine-induced locomotion and gnawing: evidence for two different mechanisms of action. Psychopharmacology 56:239–247Google Scholar
  13. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  14. Martres MP, Sokoloff P, Delandre M, Schwartz JC, Protais P, Costentin J (1984a) Selection of dopamine antagonists discriminating various behavioural responses and radioligand binding sites. Naunyn-Schmiedeberg's Arch Pharmacol 302:102–115Google Scholar
  15. Martres MP, Sokoloff P, Schwartz JC (1984b) Dopaminergic binding sites in rat striatal slices and the action of guanyl nucleotides. Naunyn-Schmiedeberg's Arch Pharmacol 325:116–123Google Scholar
  16. Moore KE, Kelly PH (1978) Biochemical pharmacology of mesolimbic and mesocortical dopaminergic neurons. In: Lipton MA, Di Mascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 221–234Google Scholar
  17. Protais P, Costentin J, Schwartz JC (1976) Climbing behavior induced by apomorphine in mice: a simple test for the study of dopamine receptors in striatum. Psychopharmacology 50:1–6Google Scholar
  18. Protais P, Dubuc I, Costentin J (1983) Pharmacological characteristics of dopamine receptors involved in the dual effect of dopamine agonists on yawning behaviour in rats. Eur J Pharmacol 94:271–280Google Scholar
  19. Puech AJ, Simon P, Boissier JR (1978) Benzamides and classical neuroleptics: comparison of their action using 6 apomorphine-induced effects. Eur J Pharmacol 50:291–300Google Scholar
  20. Seeman P (1980) Brain dopamine receptors. Pharmacol Rev 32:229–313Google Scholar
  21. Schwartz JC, Baudry M, Martres, MP, Costentin J, Protais P (1978) Increased in vivo binding of 3H-pimozide in mouse striatum following repeated administration of haloperidol. Life Sci 23:1785–1790Google Scholar
  22. Schwartz JC, Delandre M, Martres MP, Sokoloff P, Protais P, Vasse M, Costentin J, Laibe P, Wermuth CG, Gulat C, Laffite A (1984) Biochemical and behavioral identification of discriminant benzamide derivatives: new tools to differentiate subclasses of dopamine receptors. In: Usdin E, Carlsson A, Dahlström A, Engel J (eds) Catecholamines, Part B: Neuropharmacology and central nervous system. Alan R Liss, New York, p 59Google Scholar
  23. Schwartz JC, Sokoloff P, Martres MP, Protais P, Costentin J, Bouthenet ML, Sales N (1983) Distinction of dopamine receptors well recognized by antipsychotic agents: binding, autoradiographic and behavioural studies. In: Carlsson A, Lars J, Nilsson G (eds) Symposium on dopamine receptor agonists. Acta Pharmaceutica Succica, supl 1. Swedish Pharmaceutical Press, Stockholm, pp 47–59Google Scholar
  24. Sokoloff P, Brann M, Redouane K, Martres MP, Schwartz JC, Bouthenet ML, Sales N, Mann A, Hamdi P, Wermuth CG, Roy J, Morgat JL (1984) The use of 3H-(−)DO 710 as selective dopaminergic ligand for binding and autoradiographic studies. Eur J Pharmacol 107:243–251Google Scholar
  25. Sokoloff P, Martres MP, Delandre M, Redouane K, Schwartz JC (1984) 3H-domperidone binding sites differ in rat striatum and pituitary. Naunyn Schmiedeberg's Arch Pharmacol 327:221–227Google Scholar
  26. Sokoloff P, Martres MP, Schwartz JC (1980) Three classes of dopamine receptors (D-2, D-3, D-4) identified by binding studies with 3H-apomorphine and 3H-domperidone. Naunyn-Schmiedeberg's Arch Pharmacol 315:89–102Google Scholar
  27. Van der Werf JF, Sebens JB, Vaalburg W, Korf J (1983) In vivo binding of N-n-propylnorapomorphine in the rat brain: regional localization quantification in striatum and lack of correlation with dopamine metabolism. Eur J Pharmacol 87:259–270Google Scholar
  28. Vasse M, Protais P, Costentin J, Schwartz JC (1985) Unexpected potentiation by discriminant benzamide derivatives of stereotyped behaviours elicited by dopamine agonists in mice. Naunyn-Schmiedeberg's Arch Pharmacol 329:108–116Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • C. Gulat-Marnay
    • 1
  • A. Lafitte
  • J. -C. Schwartz
    • 2
  • P. Protais
    • 3
  1. 1.Laboratoire de PhysiologieUniversité René-DescartesParisFrance
  2. 2.Unité de Neurobiologie de l'INSERM, U-109ParisFrance
  3. 3.Laboratoire de Pharmacodynamie et PhysiologieU.E.R. de Médecine et PharmacieSt.-Etienne-du-RouvrayFrance

Personalised recommendations