The effects of harmine on the transmembrane action potentials of guinea-pig left atria as compared to those of quinidine

  • H. Iven
  • G. Zetler


The actions of quinidine (7.7 and 25.5 μM) and harmine (10,33 and 66 μM) on the action potential of isolated guinea-pig atria were studied. Both substances prolonged repolarization time dose-dependently. The depolarization velocity was considerably reduced by quinidine, while it was comparatively little affected by harmine. Antiarrhythmic compounds of the harmine type are rare.

The effects on the action potential explain the differences between quinidine and harmine with regard to effects on the ECG and antagonism of aconitine-induced arrhythmia.

Key words

Antiarrhythmic Compounds Action Potential Harmine Heart Quinidine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armitage, A. K.: The influence of potassium concentration on the action of quinidine and of some antimalarial substances on cardiac muscle. Brit. J. Pharmacol. 12, 74–78 (1957)Google Scholar
  2. Bieger, D.: Einfluß von Prilocain auf die transmembranalen Potentiale des Meerschweinchen-Vorhofs. Ärztl. Forsch. 22, 56–63 (1968)Google Scholar
  3. Conn, H. L., Jr., Luchi, R. J.: Some quantitative aspects of the binding of quinidine and related quinoline compounds by human serum albumin. J. clin. Invest. 40, 509–516 (1961)Google Scholar
  4. Cox, A. R., West, T. C.: Sodium lactate reversal of quinidine effect studied in rabbit atria by the microelectrode technique. J. Pharmacol. exp. Ther. 131, 212–222 (1961)Google Scholar
  5. Gettes, L. S., Surawicz, G., Shiue, J. C.: Effect of high K, low K and quinidine on QRS duration and ventricular action potential. Amer. J. Physiol. 203, 1135–1140 (1962)Google Scholar
  6. Hollander, P. B., Besch, H. R.: An electropharmacological comparison between quinidine and dihydroquinidine on isolated rat atria. Arch. int. Pharmacodyn. 178, 407–411 (1969)Google Scholar
  7. Johnson, E. A.: The effect of quinidine, procaine amide and pyrilamine on the membrane resting and action potential of guinea-pig ventricular muscle fibers J. Pharmacol. exp. Ther. 117, 237–244 (1956)Google Scholar
  8. Johnson, E. A., McKinnon, M. G.: The differential effect of quinidine and pyrilamine on the myocardial action potential at various rates of stimulation. J. Pharmacol. exp. Ther. 120, 460–468 (1957)Google Scholar
  9. Klein, R. L., Holland, W. C., Tinsley, B.: Quinidine and unidirectional cation fluxes in atria. Circulat. Res. 8, 246–252 (1960)Google Scholar
  10. Lüllmann, H., Weber, R. H.: Über die Wirkung von Phenytoin auf Digitalisbedingte Arrythmien. Ärztl. Forsch. 22, 49–55 (1968)Google Scholar
  11. Mendez, R., Kabela, E., Pastelin, G., Martínez-López, M., Sánchez-Pérez, S.: Antiarrhythmic actions of clemizole as pharmacologic evidence for a circus movement mechanism in atrial flutter. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 262, 325–336 (1969)Google Scholar
  12. Pappano, A. J.: Biphasic effect of nicotine on action potential repolarization in electrically driven guinea-pig atria. J. Pharmacol. exp. Ther. 172, 255–265 (1970)Google Scholar
  13. Pappano, A. J.: Propranolol-insensitive effects of epinephrine on action potential repolarization in electrically driven atria of the guinea pig. J. Pharmacol. exp. Ther. 177, 85–95 (1971)Google Scholar
  14. Peper, K., Trautwein, W.: The effect of aconitine on the membrane current in cardiac muscle. Pflügers Arch. ges. Physiol. 296, 328–336 (1967)Google Scholar
  15. Reiter, M., Seibel, K., Stickel, F. J.: Sodium dependence of the inotropic effect of a reduction in extracellular potassium concentration. Naunyn-Schmiedebergs Arch. Pharmak. 268, 361–378 (1971)Google Scholar
  16. Sekiya, A., Vaughan Williams, E. M.: A comparison of the antifibrillatory actions and effects on intracellular cardiac potentials of pronethanol, disopyramide and quinidine. Brit. J. Pharmacol. 21, 473–481 (1963)Google Scholar
  17. Singh, B. N., Vaughan Williams, E. M.: The effect of amiodarone, a new anti-anginal drug, on cardiac muscle. Brit. J. Pharmacol. 39, 657–667 (1970)Google Scholar
  18. Sokolow, M., Ball, R. E.: Factors influencing conversion of chronic atrial fibrillation with special reference to serum quinidine concentration. Circulation 14, 568–583 (1956)Google Scholar
  19. Spilker, B., Shevde, S.: Effect of various drugs on electrical and mechanical parameters of atrial muscle. Europ. J. Pharmacol. 15, 145–150 (1971)Google Scholar
  20. Strubelt, O., Back, G., Uhl, E., Zetler, G.: Cardiac output, heart rate, and blood pressure as influenced by equi-antiarrhythmic doses of eight antifibrillatory agents. Naunyn-Schmiedebergs Arch. Pharmak. 271, 346–360 (1971)Google Scholar
  21. Szekeres, L., Papp, G. J.: Experimental cardiac arrhythmias and antiarrhythmic drugs. Budapest: Akadémiai Kiadó 1971Google Scholar
  22. Trautwein, W.: Generation and conduction of impulses in the heart as affected by drugs. Pharmacol. Rev. 15, 277–332 (1963)Google Scholar
  23. Vaughan Williams, E. M.: The mode of action of quinidine on isolated rabbit atria interpreted from intracellular potential records. Brit. J. Pharmacol. 13, 276–287 (1958)Google Scholar
  24. Vaughan Williams, E. M.: Classification of antiarrhythmic drugs: Symposium on cardiac arrhythmias, pp. 449–472. Ed. E. Sandøe, E. Flensted-Jensen and K. H. Olesen. Södertälje: A. B. Astra 1970Google Scholar
  25. Walsh, M. J., Hollander, P. B., Truitt, E. B.: Sympathomimetic effects of acetaldehyde on the electrical and contractile characteristics of isolated left atria of guinea pigs. J. Pharmacol. exp. Ther. 167, 173–186 (1969)Google Scholar
  26. Washizu, Y.: An analysis of effects of procaine and some ions on guinea-pig cardiac action potentials. Arch. int. Pharmacodyn. 195, 260–271 (1972)Google Scholar
  27. Weidmann, S.: The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol. (Lond.) 127, 213–224 (1955)Google Scholar
  28. West, T. C., Amory, D. W.: Single fiber recording of the effects of quinidine at atrial and pacemaker sites in the isolated-right atrium of the rabbit. J. Pharmacol. exp. Ther. 130, 183–193 (1960)Google Scholar
  29. Zetler, G.: Indirect cardiac actions of indole, simple indole derivatives and harmine. Naunyn Schmiedeberg's Arch. Pharmacol. 283, 165–179 (1974)Google Scholar
  30. Zetler, G., Lenschow, E., Prenger-Berninghoff, W.: Die Wirkung von 11 Indol-Alkaloiden auf das Meerschweinchen-Herz in vivo und in vitro, verglichen mit 2 synthetischen Azepinoindolen, Chinidin und Quindonium. Naunyn-Schmiedebergs Arch. Pharmak. exp. Path. 260, 26–49 (1968)Google Scholar
  31. Zetler, G., Lessau, W.: Refractory period and strophanthin actions, as influenced by four indole alkaloids and two synthetic azepinoindoles. Pharmacology 8, 235–243 (1972)Google Scholar
  32. Zetler, G., Singbartl, G.: Inhibition of cardiac effects of noradrenaline by eleven indole alkaloids, two azepinoindoles, quinidine, quindonium, and propranolol. Pharmacology 4, 129–142 (1970)Google Scholar
  33. Zetler, G., Strubelt, O.: Tierexperimentelle Beurteilung von Antiarrhythmica unter besonderer Berücksichtigung der therapeutischen Breite. Presentation at 2. Wiener Arrhythmie-Symposium, 6. and 7. December 1973. To be published in the monography on this symposiumGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • H. Iven
    • 1
  • G. Zetler
    • 1
  1. 1.Institut für Pharmakologie der Medizinischen Hochschule LübeckLübeckGermany

Personalised recommendations