Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 275, Issue 4, pp 419–433 | Cite as

The influence of rare earths on hepatic gluconeogenesis

  • Randolf Schurig
  • Eckard Oberdisse
Article

Summary

After intravenous application of praseodymium nitrate, female Wistar rats develop a pronounced hypoglycemia which is due to an inhibition of hepatic gluconeogenesis. The renal gluconeogenesis remains uninfluenced. Among the gluconeogenetic key enzymes, pyruvate carboxylase and phosphoenolpyruvate carboxykinase are most drastically reduced in their activity, while there is only a slight effect on glucose-6-phosphatase and fructose-1,6-diphosphatase. An allosteric effect of praseodymium or a synthesis of an inhibitor caused by rare earths can be excluded. The activity of other enzymes which catalyse steps of both glycolysis and gluconeogenesis is not influenced. This selectivity of rare earths seems to indicate that there might be different genes for glycolysis and gluconeogenesis and led us to suppose that the site of action of rare earths is to be looked for at the nucleic acid system.

Key words

Rare Earths Gluconeogenesis Gluconeogenetic Key Enzymes Liver Kidney 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baginski, E. S., Foa, P. P., Zak, B.: In: Methoden der enzymatischen Analyse, 2. Aufl., S. 839–843. Hrsg. H. U. Bergmeyer. Weinheim: Verlag Chemie 1970.Google Scholar
  2. Beisenherz, G., Boltze, H. J., Bücher, Th., Czok, R., Garbade, K. H., Meyer-Arendt, E., Pfleiderer, G.: Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. Naturforsch. 8b, 555–577 (1953).Google Scholar
  3. Bruce, D. W., Hietbrink, B. E., Du Bois, K. P.: The acute mammalian toxicity of rare earth nitrates and oxides. Toxicol. app. Pharmacol. 5, 750–759 (1963).Google Scholar
  4. Bücher, Th., Luh, W., Pette, D.: Einfache und zusammengesetzte optische Tests mit Pyridinnucleotiden. In: Hoppe-Seyler-Thierfelder, Handbuch der physiologisch-und pathologisch-chemischen Analyse, 10. Aufl., Bd. VI/A, S. 292–339. Berlin-Göttingen-Heidelberg: Springer 1964.Google Scholar
  5. Czok, R., Lamprecht, W.: In: Methoden der enzymatischen Analyse, 2. Aufl., S. 1407–1411. Hrsg. H. U. Bergmeyer Weinheim: Verlag Chemie 1970.Google Scholar
  6. Dagley, S.: In: Methoden der enzymatischen Analyse, 2. Aufl., S. 1520–1523. Hrsg. H. U. Bergmeyer. Weinheim: Verlag Chemie 1970.Google Scholar
  7. Davidson, J. N., Waymouth, C.: Tissue nucleic acids. Biochem. J. 38, 39–50 (1944).Google Scholar
  8. Fischler, F., Roeckl, K. W.: Über experimentelle Beeinflussung der Leberfunktionen und der anatomischen Leberstruktur durch Einwirkung seltener Erden. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 189, 4–21 (1938).Google Scholar
  9. Hammarsten, E., Teorell, T.: Versuche über mikrochemische Reaktionen. II. Ausfällungen von Eiweiß-Nukleinsäuren mit Lanthan- und Sulfosalicylsäureionen Acta med. scand. 68, 226–238 (1928).Google Scholar
  10. Henning, H.-V., Seubert, W.: Zum Mechanismus der Gluconeogenese und ihrer Steuerung. I. Quantitative Bestimmung der Pyruvat-Carboxylase in Rohextrakten der Rattenleber. Biochem. Z. 340, 160–170 (1964).Google Scholar
  11. Henning, H.-V., Stumpf, B., Ohly, B., Seubert, W.: On the mechanism of gluconeogenesis and its regulation. III. The gluconeogenetic capacity and the activities of pyruvate-carboxylase and PEP-carboxylase of rat kidney and rat liver after cortisol treatment and starvation. Biochem. Z. 344, 274–288 (1966).Google Scholar
  12. Hochstrate, C., Oberdisse, E.: Biochemische Veränderungen im Serum der Ratte nach kombinierter Applikation lebervergrößernder und lebertoxischer Pharmaka. Naunyn-Schmiedebergs Arch. Pharmak. 266, 357–358 (1970).Google Scholar
  13. Kyker, C. G., Cress, E. A.: Acute toxicity of yttrium, lanthanum, and other rare earths. Arch. industr. Hlth 16, 475–479 (1957).Google Scholar
  14. Laszlo, D., Ekstein, D. M., Lewin, R., Stern, K. G.: Biological studies on stable and radioactive rare earth compounds. I. On the distribution of lanthanum in the mammalian organism. J. nat. Cancer Inst. 13, 559–573 (1952).Google Scholar
  15. Löffler, G., Wieland, O.: Eine Isotopenmethode zur enzymatischen Bestimmung von Oxalacetat. Biochem. Z. 336, 447–454 (1963).Google Scholar
  16. Magnusson, G.: The behaviour of certain lanthanons in rats. Acta pharmacol. toxicol. (Kbh.) 3 Suppl. 3, 1–95 (1963).Google Scholar
  17. Maxwell, L. C., Bischoff, F.: The effect of thorium, cerium, erbium, yttrium, didymium, praseodymium, manganese, and lead upon transplantable rat tumors. J. Pharmacol. exp. Ther. 43, 61–70 (1931).Google Scholar
  18. Neubert, D., Hoffmeister, I.: Intracelluläre Lokalisation von Fettsubstanzen bei experimenteller Leberverfettung. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 237, 519–537 (1960).Google Scholar
  19. Nordlie, R. C., Lardy, H. A.: Mammalian liver phosphoenolpyruvate carboxykinase activities. J. biol. Chem. 238, 2259–2263 (1963).Google Scholar
  20. Novello, F., Stirpe, F.: The effects of copper and other ions on the ribonucleic acid polymerase activity of isolated rat liver nuclei. Biochem. J. 111, 115–119 (1969).Google Scholar
  21. Oberdisse, E.: Einfluß von Pharmaka auf die Aktivität normaler und induzierter Fermente der Rattenleber. Habilitationsschrift, Med. Fak. Freie Univ. Berlin 1970.Google Scholar
  22. Prinz, W., Seubert, W.: Effect of insulin on pyruvate carboxylase in alloxan diabetic animals. Biochem. biophys. Res. Commun. 16, 582–585 (1964).Google Scholar
  23. Schmautz, E.: Geschlechtshäufigkeit der Verteilung von Radiocer bei der Ratte. Strahlentherapie 123, 267–278 (1964).Google Scholar
  24. Seubert, W., Huth, W.: On the mechanism of gluconeogenesis and its regulation. II. The mechanism of gluconeogenesis from pyruvate and fumarate. Biochem. Z. 343, 176–191 (1965).Google Scholar
  25. Snyder, F., Cress, E. A., Kyker, G. C.: Liver lipid response to intravenous rare earths in rats. J. Lipid Res. 1, 125–131 (1959).Google Scholar
  26. Snyder, F., Stephens, N.: Plasma free fatty acids and the rare-earth fatty liver. Proc. Soc. exp. Biol. (N.Y.) 106, 202–204 (1961).Google Scholar
  27. Störmer, B., Janssen, W., Reinauer, H., Staib, W., Hollmann, S.: Enzymaktivitäten und Substratkonzentrationen in der Rattenleber unter den Bedingungen der Cortisol-Gluconeogenese. Hoppe-Seylers Z. physiol. Chem. 351, 296–304 (1970).Google Scholar
  28. Weber, G.: Study and evaluation of regulation of enzyme activity and synthesis in mammalian liver. In: Advances in enzyme regulation, Vol. 1, pp. 1–35. Ed. G. Weber. Oxford-London-New York-Paris: Pergamon Press 1963.Google Scholar
  29. Weber, G., Singhal, R. L., Stamm, N. B., Srivastava, S. K.: Hormonal induction and suppression of liver enzyme biosynthesis. Fed. Proc. 24, 745–754 (1965).Google Scholar
  30. Weiss, G., Ohly, B., Brod, H., Seubert, W.: On the intracellular location of pyruvate carboxylase. In: Regulation of gluconeogenesis, pp. 29–49. Eds. H.-D. Söling and B. Willms. Stuttgart: G. Thieme, New York-London: Academic Press 1971.Google Scholar
  31. Widnell, C. C., Tata, J. R.: Studies on the stimulation by ammonium sulfate of the DNA-dependent RNA polymerase of isolated rat-liver nuclei. Biochim. biophys. Acta (Amst.) 123, 478–492 (1966).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • Randolf Schurig
    • 1
  • Eckard Oberdisse
    • 1
  1. 1.Pharmakologisches Institut der Freien Universität BerlinBerlinGermany

Personalised recommendations