Naunyn-Schmiedeberg's Archives of Pharmacology

, Volume 327, Issue 2, pp 183–187 | Cite as

(−)-3H-desmethoxyverapamil labelling of putative calcium channels in brain: autoradiographic distribution and allosteric coupling to 1,4-dihydropyridine and diltiazem binding sites

  • David R. Ferry
  • Alexandra Goll
  • Christine Gadow
  • Hartmut Glossmann
Short Communication


The optically pure phenylalkylamine Ca2+-antagonist (−)-3H-desmethoxyverapamil has been used to directly label putative Ca2+ channels in thaw-mounted guinea-pig brain sections and in hippocampus homogenates. The autoradiographic distribution of (−)-3H-desmethoxyverapamil binding shows the highest density of binding sites in the molecular layer of the hippocampus, medium levels in the cerebral cortex and low levels in the cerebellum. This anatomical distribution is the same as that found for 1,4-dihydropyridine binding sites, labelled by 3H-nimodipine. (−)-3H-desmethoxyverapamil binds to hippocampus membranes with a KD value of 1.6±0.2 nmol/l and a Bmax of 870±175 fmol per mg of protein. Binding is stereospecifically inhibited by the phenylalkylamines desmethoxyverapamil, D-600 and verapamil. 1,4-Dihydropyridines regulate (−)-3H-desmethoxyverapamil binding in a negative heterotropic allosteric manner, depending on the availability of free divalent cations. The potency series of phenylalkylamine Ca2+ antagonists in inhibiting high affinity (−)-3H-desmethoxyverapamil binding to hippocampus membranes and the allosteric regulation by chemically different classes of Ca2+ antagonists suggest that the (−)-3H-desmethoxyverapamil binding sites in hippocampus are associated with putative Ca2+ channels.

Key words

(−)-3H-Desmethoxyverapamil Hippocampus Ca2+-antagonist Allosteric regulation Autoradiography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albus U, Habermann E, Ferry DR, Glossmann H (1984) Novel 1,4-dihydropyridine (Bay K 8644) facilitates calcium dependent 3H-noradrenaline release from PC 12 cells. J Neurochem 42:1186–1189Google Scholar
  2. Catterall W (1984) The molecular basis of neuronal excitability. Science 223:653–661Google Scholar
  3. Cortes R, Supevilai P, Karobath M, Palocios JA (1983) The effects of lesions in the cat hippocampus suggest the association of calcium channel blocker binding sites with specific neuronal populations. Neurosci Lett 42:249–254Google Scholar
  4. Ferry DR, Glossmann H (1982a) Evidence for multiple drug receptor sites within the putative calcium channel. Naunyn-Schmiedeberg's Arch Pharmacol 321:80–83Google Scholar
  5. Ferry DR, Glossmann H (1982b) Identification of putative calcium channels in skeletal muscle microsomes. FEBS Lett 148:331–337Google Scholar
  6. Galizzi JP, Fosset M, Lazdunski M (1984) 3H-verapamil binding sites in skeletal muscle transverse tubule membranes. Biochem Biophys Res Commun 118:239–245Google Scholar
  7. Glossmann H, Ferry DR, Lübbecke F, Mewes R, Hofmann F (1982) Calcium channels: Direct identification with radioligand binding studies. Trends in Pharmacol Sci 3:431–437Google Scholar
  8. Glossmann H, Linn T, Rombusch M, Ferry DR (1983) Temperature dependent regulation of d-cis-3H-diltiazem binding to calcium channels by 1,4-dihydropyridines channel agonists and antagonists. FEBS Lett 160:226–232Google Scholar
  9. Goll A, Ferry DR, Glossmann H (1984) Target size analysis and molecular properties of Ca2+-channels labelled with 3H-verapamil. Eur J Biochem 141:177–186Google Scholar
  10. Kaumann AJ, Uchitel OD (1976) Reversible inhibition of potassium contractures by optical isomers of verapamil and D-600 on slow muscle fibers of the frog. Naunyn-Schmiedeberg's Arch Pharmacol 292:21–27Google Scholar
  11. Mannhold R, Steiner R, Haas W, Kaufmann R (1978) Investigation on the structure activity relations of verapamil. Naunyn-Schmiedeberg's Arch Pharmacol 302:217–226Google Scholar
  12. Murphy KMM, Gould RJ, Largent BL, Snyder SH (1983a) A unitary mechanism of calcium antagonist action. Proc Natl Acad Sci USA 80:860–864Google Scholar
  13. Murphy KMM, Gould RJ, Snyder SH (1983b) Autoradiographic visualization of 3H-nitrendipine binding sites in rat brain: localization to synaptic zones. Eur J Pharmacol 81:517–519Google Scholar
  14. Nagao T, Sato M, Iwasawa Y, Takada T, Ishida R, Nakajima H, Kiyomoto A (1972) Studies on a new 1,5-benzothiazepine derivate (CRD-401). III. Effects of optical isomers of CRD-401 on smooth muscle and other pharmacological properties. Japan J Pharmacol 22:467–478Google Scholar
  15. Nawrath H, Raschack M (1984) Calcium antagonistic effect of the radioligand (−)-3H-desmethoxyverapamil on cardiac and vascular smooth muscle preparations. Cell Calcium (in press)Google Scholar
  16. Palacios JM (1983) Quantitative receptor autoradiography: Application to the study of multiple serotonin receptors in rat cortex. In: Mandel P, DeFendis FV (eds) CNS-receptors. From molecular pharmacology to behaviour. Raven Press, New York, pp 455–463Google Scholar
  17. Quirion R (1983) Autoradiographic localisation of a calcium channel antagonist, 3H-nitrendipine, binding sites in rat brain. Neurosci Lett 36:267–271Google Scholar
  18. Reynolds IJ, Gould RJ, Snyder SH (1983) 3H-verapamil binding sites in brain and skeletal muscle: Regulation by calcium. Eur J Pharmacol 95:319–321Google Scholar
  19. Schramm M, Thomas G, Towart R, Franckowiak G (1983) Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303:535–537Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • David R. Ferry
    • 1
  • Alexandra Goll
    • 1
  • Christine Gadow
    • 1
  • Hartmut Glossmann
    • 1
  1. 1.Rudolf-Buchheim-Institut für PharmakologieJustus-Liebig-UniversitätGießenFederal Republic of Germany

Personalised recommendations