Skip to main content
Log in

Contributions to the heat capacity of solid molybdenum in the range 300–2890 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An analysis has been made of contributions to the heat capacity of Mo, with a special examination of the effect of the formation of vacancies near the melting point. Literature values of the heat capacity at constant pressure C P were fitted to a polynomial. Using recent measurements of the velocity of sound at high temperature and literature data of the coefficient of expansion, the dilation correction was made to C P to obtain the heat capacity at constant volume C V . This heat capacity was taken to consist only of independent contributions from electron excitations (C VE), harmonic lattice vibrations (C VH), anharmonic lattice vibrations (C VA), and the formation of vacancies (C VV). Three models of C VE (free electron, band theory, and electron-photon) have been used to calculate the electronic contribution, and an examination of the results indicates that the electron-phonon model is the best. C VH is assumed to be given by the Debye model, with a single Debye temperature. Thus, the excess heat capacity C VEX= C V -C VE -C VH is taken as equal to (C VA +C VV ), where C VA is linear with temperature (C VA=A T), and we have fitted the values of C VEX to determine the values of A and the energy and entropy of formation of vacancies which give the best fit. The anharmonic contribution is positive. The energy of vacancy formation is 100,000 J · mol−1, in agreement with estimates by Kraftmakher from C P data. The entropy of formation is 11.6 J · mol−1 · K−1. The concentration of vacancies at the melting point (2890 K) is calculated to be 6.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Ya. A. Kraftmakher, Sov. Phys.-Sol. State 6(2):396 (1964).

    Google Scholar 

  2. Ya. A. Kraftmakher, High Temp.-High Press. 5(4):433 (1973).

    Google Scholar 

  3. Ya. A. Kraftmakher, Issled. Vys. Temp. Akad. Nauk. SSSR-Sib. Otd., 5 (1966).

  4. Ya. A. Kraftmakher, Scripta Met. 11:1033 (1977).

    Google Scholar 

  5. Ya. A. Kraftmakher, in Int. Symp.-Defect Interactions in Solids (I.I.S., Bangalore, India, 1972), p. 64.

    Google Scholar 

  6. Ya. A. Kraftmakher and P. G. Strelkov, in Proc. Int. Conf. Vacancies and Interstitials in Metals (North-Holland, Amsterdam, 1969), pp. 59–79.

    Google Scholar 

  7. M. Hoch, in ref. 6.

    Google Scholar 

  8. H. Schultz, Mat. Sci. Eng. 3:189 (1968–69).

    Google Scholar 

  9. M. Hoch, in Thermodyn. Nucl. Mat. Proc. Symp. 4th (IAEA, Vienna, Austria, 1975), Vol. 2, pp. 113–122.

    Google Scholar 

  10. M. Hoch, in Proc. Symp. Thermophys. Prop. 5 (ASME, New York, 1970), pp. 380–384.

    Google Scholar 

  11. K. Maier, M. Peo, B. Saile, H. E. Schaefer, and A. Seeger, Phil. Mag. A 40(5):701 (1979).

    Google Scholar 

  12. A. Seeger, Cryst. Lattice Defects 4(4):221 (1973).

    Google Scholar 

  13. R. W. Siegel, J. Nucl. Mat. 69–70: 117 (1978).

    Google Scholar 

  14. F. Simon and W. Zeidler, Z. Phys. Chem. 123:383 (1926).

    Google Scholar 

  15. K. Clusius and P. Franzosini, Z. Naturforsch. 14a:99 (1959).

    Google Scholar 

  16. L. M. Khriplovich and I. E. Paukov, J. Chem. Thermodyn. 15:333 (1983).

    Google Scholar 

  17. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements (ASM, Metals Park, Ohio, 1973).

    Google Scholar 

  18. D. Cooper and G. Langstroth, Phys. Rev. 33:243 (1929).

    Google Scholar 

  19. T. Stern, Phys. Rev. 32:298 (1928).

    Google Scholar 

  20. H. L. Bronson, H. M. Chisholm, and S. M. Dockerty, Can. J. Res. 8:282 (1933).

    Google Scholar 

  21. F. M. Jaeger and W. A. Veenstra, Rev. Trav. Chim. 53:677 (1934).

    Google Scholar 

  22. T. A. Redfield and J. H. Hill, USAEC-ORNL (Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1951).

    Google Scholar 

  23. M. Horowitz and J. G. Daunt, Phys. Rev. 31:1099 (1953).

    Google Scholar 

  24. C. F. Lucks and H. W. Deem, WADC Tech. Rept. 55-496, Battelle Memorial Inst., Columbus, Ohio (1956), p. 43.

    Google Scholar 

  25. I. B. Fieldhouse, J. C. Hedge, J. I. Lang, A. N. Takata, and T. E. Waterman, WADC Tech. Rept. 55-495 Part I, Wright Air Dev. Center, Wright-Patterson Air Force Base, Ohio (1956).

    Google Scholar 

  26. N. S. Rasor and J. D. McClelland, Phys. Chem. Solids 15:17 (1960).

    Google Scholar 

  27. L. S. Lazareva, P. B. Kantor, and V. V. Kandyba, Phys. Met. Metallog. 11:133 (1961).

    Google Scholar 

  28. G. W. Lehman, WADD Tech. Rept. 60-581, Atomics Int., Canoga Park, Calif. (1960).

    Google Scholar 

  29. V. A. Kirillin, A. E. Sheindlin, and V. Ya. Chekhovskoy, Dokl. Akad. Nauk. SSSR 139(3):645 (1961).

    Google Scholar 

  30. R. E. Taylor and R. A. Finch, Atomics Int. N.A.A., SR-6034, Canoga Park, Calif. (1961).

  31. G. C. Lowenthal, Aust. J. Phys. 16:47 (1963).

    Google Scholar 

  32. R. L. Rudkin, W. J. Parker, and R. J. Jenkins, Temp. Meas. Cont. Sci. Ind. 3:523 (1962).

    Google Scholar 

  33. V. A. Kirillin, A. E. Sheindlin, and V. Ya. Chekhovskoy, High Temperature Technology, IUPAC-Proc. Int. Symp. High Temp. Tech. (Butterworths, London, 1964), pp. 471–484.

    Google Scholar 

  34. V. A. Kirillin, A. E. Sheindlin, V. Ya. Chekhovskoi, and V. A. Petrov, Teplofiz. Svoistva. Veshchestv. (Leningrad Teckhnol. Inst. Kholod. Prom., Leningrad, U.S.S.R., 1969), Vol. 3, pp. 80–87.

    Google Scholar 

  35. I. N. Makarenko, L. N. Trukhanova, and L. P. Fillipov, High Temp. 8(2): 416 (1970).

    Google Scholar 

  36. I. Ya. Dikhter and S. V. Lebedev, High Temp. 9(5):845 (1971).

    Google Scholar 

  37. A. Cezairliyan, M. S. Morse, H. A. Berman, and C. W. Beckett, J. Res. Natl. Bur. Stand. 74(a):65 (1970).

    Google Scholar 

  38. B. Ya. Berezin, V. Ya. Chekhovskoi, and A. E. Sheindlin, High Temp.-High Press. 3:287 (1971).

    Google Scholar 

  39. M. M. Mebed, R. P. Yurchak, and L. P. Filippov, High Temp.-High Press 5(3):253 (1973).

    Google Scholar 

  40. V. Ya. Chekhovskoi and B. Ya. Berezin, Teplofiz. Svoistva. Tverd. Veshchestv. Mater. Konf. 4 (Nauka, Moscow, U.S.S.R., 1973), pp. 128–134.

    Google Scholar 

  41. V. B. Fedorov, High Temp. 13(3):608 (1975).

    Google Scholar 

  42. V. Ya. Chekhovskoi and R. G. Kalinkina, Zh. Fiz. Khim. 49(3):740 (1975).

    Google Scholar 

  43. S. V. Lebedev, A. I. Savvatimskii, and M. A. Sheindlin, High Temp. 14(2):259 (1976).

    Google Scholar 

  44. G. A. Zhagrina, L. R. Fokin, and V. Ya. Chekhovskoi, Teplofiz. Svoistva. Veschestv. Pri. Vysok. Temp., 1978 (Ref. Zh. Fiz. E., Abstr. No. 1E327, 1979).

  45. D. A. Ditmars, A. Cezairliyan, S. Ishihara, and T. B. Douglas, Enthalpy and Heat Capacity Standard Reference Material: Molybdenum SRM781, From 273 to 2800 K, N.B.S. Spec. Publ. 260-55-1977.

  46. V. A. Korshunov, Phys. Met. Metallog. 41(2):54 (1976).

    Google Scholar 

  47. A. G. Worthing, Phys. Rev. 28(1):190 (1926).

    Google Scholar 

  48. F. C. Nix and D. MacNair, Phys. Rev. 61:74 (1942).

    Google Scholar 

  49. J. Demarquay, Compt. Rend. 220(2):81 (1945).

    Google Scholar 

  50. J. W. Edwards, R. Speiser, and H. L. Johnston, J. Appl. Phys. 22(4):424 (1951).

    Google Scholar 

  51. W. R. Apblett and W. S. Pellini, Trans. Am. Soc. Met. 44(6):1200 (1952).

    Google Scholar 

  52. E. E. Totskii, High Temp. 2(2):181 (1964).

    Google Scholar 

  53. V. M. Amonenko, P. N. V'yugov, and V. S. Gumenyuk, High Temp. 2(1):22 (1964).

    Google Scholar 

  54. J. B. Conway, R. A. Hein, R. M. Fincel, and A. C. Losekamp, Enthalpy and Thermal Expansion of Several Refractory Metals to 2500°C, USAEC. Publ-GE-TM-64-2-8 (General Electric Co., Cincinnati, Ohio, Advanced Technology Services, Feb. 1964).

    Google Scholar 

  55. R. Pawar, Curr. Sci. 36(16):428 (1967).

    Google Scholar 

  56. M. E. Straumanis and R. P. Shodhan, Trans. Met. Soc. (AIME) 242:1185 (1968).

    Google Scholar 

  57. C. L. Woodard, X-ray determination of lattice parameters and thermal expansion coefficients of aluminum, silver and molybdenum at cryogenic temperatures, Diss. Abstr. Int. B 1970, 31(1):225 (1969).

    Google Scholar 

  58. V. P. Lebedev, A. A. Mamlui, V. A. Pervakov, N. S. Petrenko, V. P. Popov, and V. I. Khotkevich, Ukr. Fiz. Zh. 14(5):746 (1969).

    Google Scholar 

  59. A. P. Nasekovskii, Izv. Vys. Ucheb. Zaved. Fiz. 12(1):65 (1969).

    Google Scholar 

  60. J. Valentich, Instrum. Contr. Syst. 42(10):91 (1969).

    Google Scholar 

  61. V. Ya. Chekhovskoi and V. A. Petukhov, in Proc. 5th Symp. Thermophys. Prop. (ASME, New York, 1970), pp. 366–372.

    Google Scholar 

  62. M. E. Straumanis and C. L. Woodard, Acta. Cryst. A27(6):549 (1971).

    Google Scholar 

  63. V. A. Petukhov and V. Ya. Chekhovskoi, High Temp.-High Press. 4(6):671 (1972).

    Google Scholar 

  64. Yu. A. Lisovskii, Sov. Phys.-Sol. State 14:2015 (1973).

    Google Scholar 

  65. Y. Waseda, K. Hirata, and M. Ohtani, High Temp.-High Press. 7(2):221 (1975).

    Google Scholar 

  66. A. N. Amatuni, T. I. Malyutina, V. Ya. Chekhovskoi, and V. A. Petukhov, High Temp.-High Press. 8(5):565 (1976).

    Google Scholar 

  67. V. A. Petukhov, V. Ya. Chekhovskoi, and A. G. Mozgovoi, High Temp. 15(1):175 (1977).

    Google Scholar 

  68. G. K. White, T. F. Smith, and R. H. Carr, Cryogenics 18(5):301 (1978).

    Google Scholar 

  69. Handbook of Chemistry and Physics, R. C. Weast, ed., 55th ed. (CRC, 1974–75).

  70. J. M. Dickinson and P. E. Armstrong, J. Appl. Phys. 38(2):602 (1967).

    Google Scholar 

  71. P. Bujard, R. Sanjines, E. Walker, J. Ashkenazi, and M. Peter, J. Phys. F. 11:775 (1981).

    Google Scholar 

  72. F. H. Featherson and J. R. Neighbours, Phys. Rev. 130:1327 (1963).

    Google Scholar 

  73. V. T. Seidenkranz and E. Hegenbarth, Exp. Technik Physik (Berlin) 26(1):13 (1978).

    Google Scholar 

  74. M. W. Zemansky, Heat and Thermodynamics, 3rd ed. (McGraw-Hill, New York, 1951).

    Google Scholar 

  75. K. A. Gscheidner, Sol. State Phys. 16:275 (1964).

    Google Scholar 

  76. J. A. Beattie, J. Math. Phys. (MIT) 6:1 (1926).

    Google Scholar 

  77. D. C. Rorer, D. G. Orr, and H. Meyer, Phys. Rev. 138:1661 (1965).

    Google Scholar 

  78. N. M. Wolcott, Conf. Phys. Des Bass. Temp., Bulletin de l'Institut International du Froid, Annexe, 286 (1955).

  79. M. Shimizu, Natl. Bur. Stands. (U.S.) Spec. Pub. 323 (1971), pp. 685–691.

  80. M. Shimizu, A. Katsuki, and K. Ohmori, J. Phys. Soc. Japan 21(10): 1922 (1966).

    Google Scholar 

  81. G. Grimvall, Phys. Kondens. Mat. 11:279 (1970).

    Google Scholar 

  82. G. Grimvall, J. Phys. Chem. Solids 29:1221 (1965).

    Google Scholar 

  83. G. Grimvall, Phys. Scripta 14:63 (1976).

    Google Scholar 

  84. I. Petroff and C. R. Vishwanathan, Natl. Bur. Stands. (U.S.) Spec. Publ. 323 (1971), pp. 53–56.

  85. R. C. Shukla, Int. J. Thermophys. 1(1):73 (1980).

    Google Scholar 

  86. V. A. Korshunov, Phys. Met. Metallog. 48(1):53 (1979).

    Google Scholar 

  87. J. D. Meakin, A. Lawley, and R. C. Koo, Lattice Defects in Quenched Metals-Proc. Int. Conf. (Academic Press, New York, 1965), pp. 767–769.

    Google Scholar 

  88. M. Suezawa and H. Kimura, Phil. Mag. 28(4):901 (1973).

    Google Scholar 

  89. I. A. Schwirlich and H. Schultz, Phil. Mag. A 42(5):601 (1980).

    Google Scholar 

  90. A. Seeger and H. Mehrer, in ref. 6.

    Google Scholar 

  91. J. Nihoul, in ref. 6.

    Google Scholar 

  92. T. Gorecki, Z. Metallk. 65(4):426 (1974).

    Google Scholar 

  93. R. O. Simmons and R. W. Balluffi, Phys. Rev. 129(4): 1533 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhury, A., Brooks, C.R. Contributions to the heat capacity of solid molybdenum in the range 300–2890 K. Int J Thermophys 5, 403–429 (1984). https://doi.org/10.1007/BF00500869

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500869

Key Words

Navigation